Dubai Telegraph - Unfinished deepsea observatory spots highest-energy neutrino ever

EUR -
AED 4.382198
AFN 78.754674
ALL 96.774708
AMD 453.149301
ANG 2.136006
AOA 1094.207135
ARS 1723.102862
AUD 1.703562
AWG 2.147844
AZN 2.027442
BAM 1.958133
BBD 2.409352
BDT 146.164116
BGN 2.003902
BHD 0.44984
BIF 3543.996936
BMD 1.193246
BND 1.513406
BOB 8.265053
BRL 6.196645
BSD 1.1962
BTN 110.054406
BWP 15.599563
BYN 3.379194
BYR 23387.630134
BZD 2.405847
CAD 1.612422
CDF 2693.762547
CHF 0.916294
CLF 0.025959
CLP 1024.998187
CNY 8.291151
CNH 8.289429
COP 4358.929228
CRC 591.891888
CUC 1.193246
CUP 31.621031
CVE 110.398824
CZK 24.32057
DJF 213.014461
DKK 7.467264
DOP 75.160557
DZD 154.348858
EGP 55.874598
ERN 17.898697
ETB 185.131832
FJD 2.622039
FKP 0.865821
GBP 0.867049
GEL 3.215789
GGP 0.865821
GHS 13.067895
GIP 0.865821
GMD 87.70765
GNF 10498.001207
GTQ 9.178126
GYD 250.254403
HKD 9.315604
HNL 31.597639
HRK 7.540838
HTG 156.807821
HUF 381.264314
IDR 20023.868432
ILS 3.681565
IMP 0.865821
INR 109.70767
IQD 1563.749454
IRR 50265.506279
ISK 145.027398
JEP 0.865821
JMD 187.696961
JOD 0.846036
JPY 183.553496
KES 154.250804
KGS 104.349672
KHR 4801.014384
KMF 491.617467
KPW 1074.001913
KRW 1714.128315
KWD 0.365981
KYD 0.996775
KZT 600.868221
LAK 25678.663363
LBP 107122.636637
LKR 370.091721
LRD 221.344446
LSL 18.781995
LTL 3.523347
LVL 0.721783
LYD 7.487624
MAD 10.8345
MDL 20.12057
MGA 5321.878904
MKD 61.653933
MMK 2506.310149
MNT 4256.181546
MOP 9.616435
MRU 47.574622
MUR 54.20887
MVR 18.435607
MWK 2072.668697
MXN 20.600147
MYR 4.698762
MZN 76.069502
NAD 18.865481
NGN 1659.806193
NIO 43.189568
NOK 11.43188
NPR 176.109616
NZD 1.971279
OMR 0.458799
PAB 1.196155
PEN 3.989617
PGK 5.083822
PHP 70.236878
PKR 333.900229
PLN 4.209046
PYG 8027.167678
QAR 4.344732
RON 5.098262
RSD 117.403788
RUB 89.791784
RWF 1733.190447
SAR 4.47538
SBD 9.615301
SCR 17.094249
SDG 717.748765
SEK 10.549557
SGD 1.511223
SHP 0.895244
SLE 29.085359
SLL 25021.780252
SOS 681.970209
SRD 45.34754
STD 24697.792058
STN 24.610708
SVC 10.466336
SYP 13196.79832
SZL 18.849358
THB 37.471506
TJS 11.172143
TMT 4.188295
TND 3.373606
TOP 2.873051
TRY 51.903114
TTD 8.118705
TWD 37.455406
TZS 3036.811959
UAH 51.195332
UGX 4255.17589
USD 1.193246
UYU 45.264869
UZS 14555.155623
VES 437.738577
VND 30910.452286
VUV 142.675312
WST 3.241825
XAF 656.725554
XAG 0.010797
XAU 0.00023
XCD 3.224808
XCG 2.155741
XDR 0.816831
XOF 653.262056
XPF 119.331742
YER 284.471219
ZAR 18.895594
ZMK 10740.668787
ZMW 23.654963
ZWL 384.224865
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    1.3800

    83.78

    +1.65%

  • BCC

    -0.5500

    80.3

    -0.68%

  • RYCEF

    -0.0700

    16.88

    -0.41%

  • BCE

    0.2200

    25.49

    +0.86%

  • NGG

    0.3900

    85.07

    +0.46%

  • CMSC

    0.0100

    23.71

    +0.04%

  • RIO

    1.7600

    95.13

    +1.85%

  • CMSD

    0.0392

    24.09

    +0.16%

  • JRI

    -0.0500

    12.94

    -0.39%

  • VOD

    0.1400

    14.71

    +0.95%

  • RELX

    -1.2100

    36.17

    -3.35%

  • BTI

    0.0600

    60.22

    +0.1%

  • GSK

    0.5600

    50.66

    +1.11%

  • BP

    0.3400

    38.04

    +0.89%

  • AZN

    -0.6300

    92.59

    -0.68%

Unfinished deepsea observatory spots highest-energy neutrino ever
Unfinished deepsea observatory spots highest-energy neutrino ever / Photo: ANNE-CHRISTINE POUJOULAT - AFP/File

Unfinished deepsea observatory spots highest-energy neutrino ever

A neutrino with 30 times more energy than any previously seen on Earth was detected by an unfinished observatory at the bottom of the Mediterranean Sea after travelling from beyond this galaxy, scientists said Wednesday.

Text size:

Neutrinos are the second most abundant particle in the universe. Known as ghost particles, they have no electric charge, almost no mass and effortlessly pass through most matter -- such as our world or bodies -- without anyone noticing.

The most violently explosive events in the universe -- such as a star going supernova, two neutron stars smashing into each other or the almighty suck of supermassive black holes -- create what is called ultra-high-energy neutrinos.

Because these particles interact so little with matter, they glide easily away from the violence that created them, travelling in a straight line across the universe.

When they finally arrive at Earth, neutrinos serve as "special cosmic messengers" offering a glimpse into the far reaches of the cosmos that is otherwise hidden from our view, Italian researcher Rosa Coniglione said in a statement.

However, these ghost particles are extremely difficult to detect. One way is by using water.

When light passes through water, it slows down. This sometimes allows quick-moving particles to overtake light -- while still not going faster than the speed of light.

When this happens, it creates a bluish glow called "Cherenkov light" that can be detected by extraordinarily sensitive sensors.

But to observe this light requires a huge amount of water -- at least one cubic kilometre, the equivalent of 400,000 Olympic swimming pools.

That is why the Cubic Kilometre Neutrino Telescope, or KM3NeT, lies at the bottom of the Mediterranean.

- Think of a ping pong ball -

The European-led facility is still under construction, and spread over two sites. Its ARCA detector, which is interested in astronomy, is nearly 3,500 metres (2.2 miles) underwater off the coast of Sicily.

The neutrino-hunting ORCA detector is in the depths near the French city of Toulon.

Cables hundreds of metres long equipped with photomultipliers -- which amplify miniscule amounts of light -- have been anchored to the seabed nearby. Eventually 200,000 photomultipliers will be arrayed in the abyss.

But the ARCA detector was operating at just a tenth of what will be its eventual power when it spotted something strange on February 13, 2023, according to new research published in the journal Nature.

A muon, which is a heavy electron produced by a neutrino, "crossed the entire detector, inducing signals in more than one-third of the active sensors," according to a statement from KM3NeT, which brings together 350 scientists from institutions in 21 countries.

The neutrino had an estimated energy of 220 petaelectronvolts -- or 220 million billion electron volts.

A neutrino with such a massive amount of energy had never before been observed on Earth.

"It is roughly the energy of a ping pong ball falling from one metre height," Dutch physicist and KM3NeT researcher Aart Heijboer told a press conference.

"But the amazing thing is that all this energy is contained in one single elementary" particle, he added.

For humans to create such a particle would require building the equivalent of a Large Hadron Collider "all around the Earth at the distance of the geostationary satellites", said French physicist Paschal Coyle.

- Blazars as source? -

With this kind of energy, the event that created this neutrino must have been beyond Milky Way.

The exact distance remains unknown, "but what we are quite sure is that it's not coming from our galaxy", said French physicist Damien Dornic.

The astrophysicists have some theories about what could have caused such a neutrino. Among the suspects are 12 blazars -- the incredibly bright cores of galaxies with supermassive black holes.

But more research is needed.

"At the time this event happened, our neutrino alert system was still in development," Heijboer emphasised.

If another neutrino is detected near the end of this year, an alert will be sent in seconds to "all the telescopes around the world so that they can point in that direction" to try to spot the source, he said.

B.Krishnan--DT