Dubai Telegraph - 'Big sponge': new CO2 tech taps oceans to tackle global warming

EUR -
AED 4.393893
AFN 78.953262
ALL 96.712183
AMD 453.508778
ANG 2.141423
AOA 1096.982427
ARS 1727.451153
AUD 1.698153
AWG 2.153291
AZN 2.038317
BAM 1.958071
BBD 2.409094
BDT 146.15954
BGN 2.008985
BHD 0.450954
BIF 3552.929735
BMD 1.196273
BND 1.513155
BOB 8.264587
BRL 6.209182
BSD 1.196087
BTN 110.048653
BWP 15.598093
BYN 3.378819
BYR 23446.943706
BZD 2.40559
CAD 1.614436
CDF 2700.552296
CHF 0.916189
CLF 0.026045
CLP 1028.388088
CNY 8.312181
CNH 8.311936
COP 4359.217493
CRC 591.786453
CUC 1.196273
CUP 31.701225
CVE 110.804782
CZK 24.31101
DJF 212.601738
DKK 7.467074
DOP 75.365224
DZD 154.565403
EGP 56.018941
ERN 17.94409
ETB 186.066631
FJD 2.620557
FKP 0.868017
GBP 0.866818
GEL 3.223992
GGP 0.868017
GHS 13.105188
GIP 0.868017
GMD 87.921452
GNF 10468.58156
GTQ 9.177646
GYD 250.240271
HKD 9.337171
HNL 31.565615
HRK 7.533166
HTG 156.781862
HUF 380.306994
IDR 20082.72598
ILS 3.701501
IMP 0.868017
INR 109.882846
IQD 1566.917574
IRR 50392.985067
ISK 145.000343
JEP 0.868017
JMD 187.6777
JOD 0.848092
JPY 183.222907
KES 154.40293
KGS 104.613833
KHR 4810.580119
KMF 492.864764
KPW 1076.725699
KRW 1713.94742
KWD 0.366574
KYD 0.996756
KZT 600.856975
LAK 25728.844638
LBP 107110.745044
LKR 370.069269
LRD 221.276674
LSL 18.872091
LTL 3.532282
LVL 0.723613
LYD 7.513716
MAD 10.831664
MDL 20.118337
MGA 5353.320097
MKD 61.634363
MMK 2512.666424
MNT 4266.975685
MOP 9.616255
MRU 47.712345
MUR 54.011532
MVR 18.494352
MWK 2074.00578
MXN 20.611939
MYR 4.698357
MZN 76.274769
NAD 18.872091
NGN 1660.235465
NIO 44.021063
NOK 11.418823
NPR 176.078245
NZD 1.969161
OMR 0.459945
PAB 1.196087
PEN 4.00004
PGK 5.19803
PHP 70.595039
PKR 334.579101
PLN 4.204623
PYG 8026.310264
QAR 4.360258
RON 5.097551
RSD 117.40341
RUB 90.022504
RWF 1745.124288
SAR 4.486872
SBD 9.663103
SCR 16.582304
SDG 719.559071
SEK 10.538893
SGD 1.512627
SHP 0.897514
SLE 29.066997
SLL 25085.238207
SOS 682.391552
SRD 45.462545
STD 24760.428343
STN 24.528452
SVC 10.46614
SYP 13230.266835
SZL 18.865884
THB 37.449369
TJS 11.171559
TMT 4.186954
TND 3.425373
TOP 2.880337
TRY 51.937248
TTD 8.118417
TWD 37.536041
TZS 3068.439642
UAH 51.190079
UGX 4254.935589
USD 1.196273
UYU 45.262503
UZS 14554.8832
VES 428.83521
VND 31103.08859
VUV 143.037152
WST 3.250046
XAF 656.718773
XAG 0.010292
XAU 0.000222
XCD 3.232987
XCG 2.155701
XDR 0.815887
XOF 656.718773
XPF 119.331742
YER 285.195798
ZAR 18.827632
ZMK 10767.891779
ZMW 23.652436
ZWL 385.199301
  • RBGPF

    0.0000

    82.4

    0%

  • SCS

    0.0200

    16.14

    +0.12%

  • BCC

    -0.5500

    80.3

    -0.68%

  • BCE

    0.2200

    25.49

    +0.86%

  • NGG

    0.3900

    85.07

    +0.46%

  • GSK

    0.5600

    50.66

    +1.11%

  • CMSC

    0.0100

    23.71

    +0.04%

  • AZN

    -0.6300

    92.59

    -0.68%

  • RELX

    -1.2100

    36.17

    -3.35%

  • RIO

    1.7600

    95.13

    +1.85%

  • BTI

    0.0600

    60.22

    +0.1%

  • RYCEF

    -0.1700

    16.43

    -1.03%

  • JRI

    -0.0500

    12.94

    -0.39%

  • VOD

    0.1400

    14.71

    +0.95%

  • BP

    0.3400

    38.04

    +0.89%

  • CMSD

    0.0392

    24.09

    +0.16%

'Big sponge': new CO2 tech taps oceans to tackle global warming
'Big sponge': new CO2 tech taps oceans to tackle global warming / Photo: Patrick T. Fallon - AFP

'Big sponge': new CO2 tech taps oceans to tackle global warming

Floating in the port of Los Angeles, a strange-looking barge covered with pipes and tanks contains a concept that scientists hope to make waves: a new way to use the ocean as a vast carbon dioxide sponge to tackle global warming.

Text size:

Scientists from University of California Los Angeles (UCLA) have been working for two years on SeaChange -- an ambitious project that could one day boost the amount of CO2, a major greenhouse gas, that can be absorbed by our seas.

Their goal is "to use the ocean as a big sponge," according to Gaurav Sant, director of the university's Institute for Carbon Management (ICM).

The oceans, covering most of the Earth, are already the planet's main carbon sinks, acting as a critical buffer in the climate crisis.

They absorb a quarter of all CO2 emissions, as well as 90 percent of the warming that has occurred in recent decades due to increasing greenhouse gases.

But they are feeling the strain. The ocean is acidifying, and rising temperatures are reducing its absorption capacity.

The UCLA team wants to increase that capacity by using an electrochemical process to remove vast quantities of CO2 already in seawater -- rather like wringing out a sponge to help recover its absorptive power.

"If you can take out the carbon dioxide that is in the oceans, you're essentially renewing their capacity to take additional carbon dioxide from the atmosphere," Sant told AFP.

- Trapped -

Engineers built a floating mini-factory on a 100-foot (30-meter) long boat which pumps in seawater and subjects it to an electrical charge.

Chemical reactions triggered by electrolysis convert CO2 dissolved in the seawater into a fine white powder containing calcium carbonate -- the compound found in chalk, limestone and oyster or mussel shells.

This powder can be discarded back into the ocean, where it remains in solid form, thereby storing CO2 "very durably... over tens of thousands of years," explained Sant.

Meanwhile, the pumped water returns to the sea, ready to absorb more carbon dioxide from the atmosphere.

Sant and his team are confident the process will not damage the marine environment, although this will require further testing to confirm.

A potential additional benefit of the technology is that it creates hydrogen as a byproduct. As the so-called "green revolution" progresses, the gas could be widely used to power clean cars, trucks and planes in the future.

Of course, the priority in curbing global warming is for humans to drastically reduce current CO2 emissions -- something we are struggling to achieve.

But in parallel, most scientists say carbon dioxide capture and storage techniques can play an important role in keeping the planet livable.

Carbon dioxide removal (CDR) could help to achieve carbon neutrality by 2050 as it offsets emissions from industries which are particularly difficult to decarbonize, such as aviation, and cement and steel production.

It could help to tackle the stocks of CO2 that have been accumulating in the atmosphere for decades.

- 'Promising solution' -

Keeping global warming under control will require the removal of between 450 billion and 1.1 trillion tons of CO2 from the atmosphere by 2100, according to the first global report dedicated to the topic, released in January.

That would require the CDR sector "to grow at a rate of about 30 percent per year over the next 30 years, much like what happened with wind and solar," said one of its authors, Gregory Nemet.

UCLA's SeaChange technology "fits into a category of a promising solution that could be large enough to be climate-relevant," said Nemet, a professor at the University of Wisconsin-Madison.

By sequestering CO2 in mineral form within the ocean, it differs markedly from existing "direct air capture" (DAC) methods, which involve pumping and storing gas underground through a highly complex and expensive process.

A start-up company, Equatic, plans to scale up the UCLA technology and prove its commercial viability, by selling carbon credits to manufacturers wanting to offset their emissions.

In addition to the Los Angeles barge, a similar boat is currently being tested in Singapore.

Sant hopes data from both sites will quickly lead to the construction of far larger plants that are capable of removing "thousands of tons of carbon" each year.

"We expect to start operating these new plants in 18 to 24 months," he said.

I.Viswanathan--DT