Dubai Telegraph - Observing quantum weirdness in our world: Nobel physics explained

EUR -
AED 4.278799
AFN 77.332466
ALL 96.575617
AMD 445.1876
ANG 2.085576
AOA 1068.388216
ARS 1684.735918
AUD 1.75613
AWG 2.09862
AZN 1.984015
BAM 1.955298
BBD 2.351906
BDT 142.873314
BGN 1.955951
BHD 0.439244
BIF 3450.13256
BMD 1.165091
BND 1.512264
BOB 8.068928
BRL 6.18139
BSD 1.167705
BTN 104.895516
BWP 15.51395
BYN 3.380546
BYR 22835.780461
BZD 2.348507
CAD 1.624445
CDF 2598.152383
CHF 0.935795
CLF 0.027249
CLP 1068.972737
CNY 8.239114
CNH 8.235468
COP 4423.838268
CRC 572.550529
CUC 1.165091
CUP 30.874907
CVE 110.236695
CZK 24.215228
DJF 207.947498
DKK 7.468599
DOP 74.200629
DZD 151.573688
EGP 55.422094
ERN 17.476363
ETB 182.080866
FJD 2.631882
FKP 0.872491
GBP 0.87341
GEL 3.139877
GGP 0.872491
GHS 13.301585
GIP 0.872491
GMD 85.051785
GNF 10146.786517
GTQ 8.944742
GYD 244.307269
HKD 9.07004
HNL 30.745973
HRK 7.537941
HTG 152.955977
HUF 381.927241
IDR 19422.821609
ILS 3.76036
IMP 0.872491
INR 104.791181
IQD 1529.71378
IRR 49079.451231
ISK 149.003201
JEP 0.872491
JMD 187.141145
JOD 0.82607
JPY 180.711448
KES 150.704566
KGS 101.886647
KHR 4676.939601
KMF 491.66861
KPW 1048.573823
KRW 1715.887947
KWD 0.35759
KYD 0.973154
KZT 590.220982
LAK 25331.604319
LBP 104570.198293
LKR 360.448994
LRD 206.107962
LSL 19.822595
LTL 3.44021
LVL 0.704752
LYD 6.347397
MAD 10.774234
MDL 19.862985
MGA 5193.64414
MKD 61.624177
MMK 2446.620372
MNT 4131.997126
MOP 9.362236
MRU 46.266921
MUR 53.675364
MVR 17.954132
MWK 2024.871384
MXN 21.185039
MYR 4.789718
MZN 74.447687
NAD 19.822595
NGN 1690.547045
NIO 42.970442
NOK 11.774198
NPR 167.831186
NZD 2.017279
OMR 0.448002
PAB 1.1678
PEN 3.926892
PGK 4.952877
PHP 68.813177
PKR 329.883811
PLN 4.230421
PYG 8097.955442
QAR 4.268104
RON 5.093784
RSD 117.405001
RUB 89.428762
RWF 1699.056442
SAR 4.372624
SBD 9.581501
SCR 15.83572
SDG 700.739077
SEK 10.962357
SGD 1.508886
SHP 0.87412
SLE 26.796781
SLL 24431.370198
SOS 666.226074
SRD 45.023191
STD 24115.028075
STN 24.494657
SVC 10.21742
SYP 12883.858981
SZL 19.816827
THB 37.09708
TJS 10.731491
TMT 4.077818
TND 3.427635
TOP 2.805259
TRY 49.532165
TTD 7.917001
TWD 36.455959
TZS 2842.8212
UAH 49.235746
UGX 4139.936989
USD 1.165091
UYU 45.74845
UZS 13910.428222
VES 289.625154
VND 30711.794538
VUV 142.222766
WST 3.250779
XAF 655.7858
XAG 0.020016
XAU 0.000276
XCD 3.148716
XCG 2.104569
XDR 0.815587
XOF 655.791427
XPF 119.331742
YER 277.75676
ZAR 19.715959
ZMK 10487.212054
ZMW 26.828226
ZWL 375.158775
  • RBGPF

    0.0000

    78.35

    0%

  • CMSC

    0.0400

    23.48

    +0.17%

  • RYCEF

    0.4600

    14.67

    +3.14%

  • RIO

    -0.5500

    73.73

    -0.75%

  • NGG

    -0.5800

    75.91

    -0.76%

  • GSK

    -0.4000

    48.57

    -0.82%

  • RELX

    0.3500

    40.54

    +0.86%

  • VOD

    0.0500

    12.64

    +0.4%

  • BTI

    0.5300

    58.04

    +0.91%

  • AZN

    -0.8200

    90.03

    -0.91%

  • SCS

    -0.1200

    16.23

    -0.74%

  • BP

    -0.0100

    37.23

    -0.03%

  • BCC

    -2.3000

    74.26

    -3.1%

  • JRI

    0.0500

    13.75

    +0.36%

  • CMSD

    -0.0300

    23.32

    -0.13%

  • BCE

    0.0400

    23.22

    +0.17%

Observing quantum weirdness in our world: Nobel physics explained
Observing quantum weirdness in our world: Nobel physics explained / Photo: HO - GOOGLE/AFP/File

Observing quantum weirdness in our world: Nobel physics explained

The Nobel Prize in Physics was awarded to three scientists on Tuesday for discovering that a bizarre barrier-defying phenomenon in the quantum realm could be observed on an electrical circuit in our classical world.

Text size:

The discovery, which involved an effect called quantum tunnelling, laid the foundations for technology now being used by Google and IBM aiming to build the quantum computers of the future.

Here is what you need to know about the Nobel-winning work by John Clarke of the UK, Frenchman Michel Devoret and American John Martinis.

- What is the quantum world? -

In the classical or "macroscopic" world -- which includes everything you can see around you -- everything behaves according to the trustworthy rules of traditional physics.

But when things get extremely small, to around the scale of an atom, these laws no longer apply. That is when quantum mechanics takes over.

Just one oddity of the quantum world is called superposition, in which a particle can exist in multiple locations at once -- until it is observed, at least.

However scientists have struggled to directly observe quantum mechanics in this "microscopic" world -- which somewhat confusingly cannot be seen through a microscope.

- What is quantum tunnelling? -

Quantum tunnelling is a strange effect that physicists first theorised almost a century ago.

Imagine a man trying to climb a mountain, Eleanor Crane, a quantum physicist at King's College London, told AFP.

In the classical world, if the climber is too tired he will not make it to the other side.

But if a particle is weak in the quantum world, there is still a "a probability of finding it on the other side of the mountain," Crane said.

Because the particle is in superposition, it could have been on both sides of the mountain simultaneously. But if you then, for example, took a picture of the particle, it would then have to pick a side.

- What did the Nobel-winners do? -

In the mid-1980s, Clarke, Devoret and Martinis built a very small -- but not quantum-level -- electrical circuit.

They set it up with two superconductors, which are cooled to almost the lowest possible temperature so they have no electrical resistance.

They then separated the two superconductors with a thin layer of material.

This would break a normal electrical circuit, but thanks to quantum tunnelling, some electrons could appear on the other side.

- Why is that important? -

French physicist Alain Aspect, a 2022 physics Nobel laureate, told AFP that an outstanding question in the field had been whether an object in our macroscopic world could "behave in a quantum way".

By illustrating quantum effects on this "somewhat large object -- though not large on our scale", the new Nobel laureates answered that question with a resounding yes, Aspect said.

Scientists could now observe this quantum effect using a normal microscope, offering a new view of this weird world.

- What about quantum computing? -

The discovery's biggest technological legacy may be that it laid the groundwork for the development of superconducting quantum bits.

While classical computers have bits that work in ones and zeros, quantum bits, or qubits, can exist in two states at once.

This gives them massive potential to spark a range of breakthrough -- though they have yet to fully live up to the hype.

Crane estimated that quantum computers could be powerful enough to "change the course of society" in the next five to 10 years.

The new Nobel laureates "set the foundation for a lot of technology that many companies are investing millions of dollars in right now to try to realise large-scale quantum computers that can actually solve certain types of problems much faster than our classical alternatives," physicist Gregory Quiroz at Johns Hopkins University told AFP.

However there are several other leading techniques in the race to build to build a quantum computer, including neutral atoms and ion traps.

The Nobel-winning work also contributed to "extremely sensitive methods of measuring electromagnetic fields and magnetic fields that rely on these kinds of circuits," Aspect added.

C.Akbar--DT