Dubai Telegraph - The surprising climate power of penguin poo

EUR -
AED 4.278489
AFN 76.301366
ALL 96.530556
AMD 444.389335
ANG 2.085119
AOA 1068.154458
ARS 1670.316609
AUD 1.75427
AWG 2.096704
AZN 1.984845
BAM 1.955415
BBD 2.345238
BDT 142.439297
BGN 1.957372
BHD 0.439074
BIF 3456.06653
BMD 1.164835
BND 1.508396
BOB 8.046379
BRL 6.313529
BSD 1.16437
BTN 104.690912
BWP 15.469884
BYN 3.34764
BYR 22830.773166
BZD 2.341828
CAD 1.611422
CDF 2599.912958
CHF 0.937162
CLF 0.02734
CLP 1072.545921
CNY 8.235507
CNH 8.234944
COP 4446.759008
CRC 568.78787
CUC 1.164835
CUP 30.868137
CVE 110.780379
CZK 24.198994
DJF 207.014999
DKK 7.469472
DOP 74.84113
DZD 151.385181
EGP 55.40272
ERN 17.47253
ETB 180.60972
FJD 2.630723
FKP 0.8723
GBP 0.873382
GEL 3.149553
GGP 0.8723
GHS 13.337819
GIP 0.8723
GMD 85.033396
GNF 10119.511721
GTQ 8.919242
GYD 243.610929
HKD 9.068302
HNL 30.667954
HRK 7.538703
HTG 152.42995
HUF 382.163892
IDR 19442.733022
ILS 3.76907
IMP 0.8723
INR 104.795933
IQD 1525.399284
IRR 49054.133779
ISK 149.006189
JEP 0.8723
JMD 186.373259
JOD 0.825914
JPY 180.836077
KES 150.617641
KGS 101.8653
KHR 4665.166047
KMF 491.560932
KPW 1048.343898
KRW 1715.709753
KWD 0.357232
KYD 0.970405
KZT 588.861385
LAK 25249.913875
LBP 104272.296288
LKR 359.159196
LRD 204.939598
LSL 19.73441
LTL 3.439456
LVL 0.704598
LYD 6.329752
MAD 10.752872
MDL 19.812009
MGA 5193.953775
MKD 61.627851
MMK 2446.083892
MNT 4131.091086
MOP 9.337359
MRU 46.433846
MUR 53.664406
MVR 17.950554
MWK 2019.093291
MXN 21.176696
MYR 4.788683
MZN 74.437324
NAD 19.73441
NGN 1689.139851
NIO 42.851552
NOK 11.767103
NPR 167.505978
NZD 2.016522
OMR 0.447885
PAB 1.164465
PEN 3.914028
PGK 4.940241
PHP 68.699705
PKR 326.441746
PLN 4.232667
PYG 8008.421228
QAR 4.244263
RON 5.093014
RSD 117.420109
RUB 89.113003
RWF 1694.158743
SAR 4.371861
SBD 9.5794
SCR 15.722146
SDG 700.652754
SEK 10.953705
SGD 1.509027
SHP 0.873928
SLE 26.791608
SLL 24426.013032
SOS 664.266196
SRD 44.99647
STD 24109.740275
STN 24.495171
SVC 10.187374
SYP 12881.033885
SZL 19.719113
THB 37.125677
TJS 10.683448
TMT 4.076924
TND 3.415727
TOP 2.804644
TRY 49.510866
TTD 7.893444
TWD 36.432793
TZS 2836.374505
UAH 48.875802
UGX 4119.187948
USD 1.164835
UYU 45.541022
UZS 13930.253805
VES 289.561652
VND 30705.060237
VUV 142.19158
WST 3.250066
XAF 655.824896
XAG 0.019865
XAU 0.000276
XCD 3.148026
XCG 2.098577
XDR 0.815408
XOF 655.723589
XPF 119.331742
YER 277.700931
ZAR 19.720255
ZMK 10484.920268
ZMW 26.920577
ZWL 375.076512
  • CMSC

    -0.0700

    23.41

    -0.3%

  • RBGPF

    0.0000

    78.35

    0%

  • NGG

    -0.3600

    75.55

    -0.48%

  • GSK

    -0.3250

    48.245

    -0.67%

  • BTI

    -0.8550

    57.185

    -1.5%

  • AZN

    0.3500

    90.38

    +0.39%

  • SCS

    -0.0470

    16.183

    -0.29%

  • BP

    -0.9500

    36.28

    -2.62%

  • RYCEF

    -0.1400

    14.51

    -0.96%

  • JRI

    0.0300

    13.78

    +0.22%

  • RIO

    -0.1300

    73.6

    -0.18%

  • CMSD

    -0.0610

    23.259

    -0.26%

  • BCE

    0.2660

    23.486

    +1.13%

  • VOD

    -0.1530

    12.48

    -1.23%

  • BCC

    -0.8000

    73.46

    -1.09%

  • RELX

    -0.1550

    40.385

    -0.38%

The surprising climate power of penguin poo
The surprising climate power of penguin poo / Photo: Mark RALSTON - AFP/File

The surprising climate power of penguin poo

Antarctica's icy wilderness is warming rapidly under the weight of human-driven climate change, yet a new study points to an unlikely ally in the fight to keep the continent cool: penguin poo.

Text size:

Published Thursday in Communications Earth & Environment, the research shows that ammonia wafting off penguin guano seeds extra cloud cover above coastal Antarctica, likely blocking sunlight and nudging temperatures down.

Lead author Matthew Boyer, an atmospheric scientist at the University of Helsinki, told AFP that lab studies had long shown gaseous ammonia can help form clouds.

But "to actually quantify this process and to see its influence in Antarctica hasn't been done," he said.

Antarctica is an ideal natural laboratory. With virtually no human pollution and scant vegetation -- both alternative sources of cloud-forming gases -- penguin colonies dominate as ammonia emitters.

The birds' future, however, is under threat.

Shrinking sea ice disrupts their nesting, feeding and predator-avoidance routines -- making it all the more urgent to understand their broader ecological role.

Along with other seabirds such as Imperial Shags, penguins expel large amounts of ammonia through droppings, an acrid cocktail of feces and urine released via their multi-purpose cloacas.

When that ammonia mixes with sulfur-bearing gases from phytoplankton -- the microscopic algae that bloom in the surrounding ocean -- it boosts the formation of tiny aerosol particles that grow into clouds.

To capture the effect in the real world, Boyer and teammates set up instruments at Argentina's Marambio Base on Seymour Island, off the northern tip of the Antarctic Peninsula.

Over three summer months -- when penguin colonies are bustling and phytoplankton photosynthesis peaks -- they monitored wind direction, ammonia levels and newly minted aerosols.

When the breeze blew from a 60,000-strong Adelie penguin colony eight kilometers (five miles) away, atmospheric ammonia spiked to 13.5  parts per billion -- about a thousand times the background level.

For over a month after the birds had departed on their annual migration, concentrations stayed roughly 100 times higher, with the guano-soaked ground acting as a slow-release fertilizer.

Particle counters told the same story: cloud-seeding aerosols surged whenever air masses arrived from the colony, at times thick enough to generate a dense fog.

Chemical fingerprints in the particles pointed back to penguin-derived ammonia.

- Penguin-plankton partnership -

Boyer calls it a "synergistic process" between penguins and phytoplankton that supercharges aerosol production in the region.

"We provide evidence that declining penguin populations could cause a positive climate-warming feedback in the summertime Antarctic atmosphere," the authors write -- though Boyer emphasized that this remains a hypothesis, not a confirmed outcome.

Globally, clouds have a net cooling effect by reflecting solar radiation back into space. Based on Arctic modeling of seabird emissions, the team believes a similar mechanism is likely at play in Antarctica.

But the impact also depends on what's beneath the clouds.

Ice sheets and glaciers also reflect much of the Sun's energy, so extra cloud cover over these bright surfaces could trap infrared heat instead -- meaning the overall effect hinges on where the clouds form and drift.

Still, the findings highlight the profound interconnections between life and the atmosphere -- from the Great Oxygenation Event driven by photosynthesizing microbes billions of years ago to penguins influencing cloud cover today.

"This is just another example of this deep connection between the ecosystem and atmospheric processes, and why we should care about biodiversity and conservation," Boyer said.

A.Al-Mehrazi--DT