Dubai Telegraph - Nobel chemistry winner sees engineered proteins solving tough problems

EUR -
AED 4.309185
AFN 77.664833
ALL 96.578153
AMD 447.171387
ANG 2.100795
AOA 1075.974916
ARS 1700.476811
AUD 1.767714
AWG 2.11499
AZN 1.993018
BAM 1.957417
BBD 2.36071
BDT 143.349055
BGN 1.95623
BHD 0.4424
BIF 3465.69311
BMD 1.173365
BND 1.515258
BOB 8.099727
BRL 6.513937
BSD 1.172048
BTN 105.019984
BWP 16.486341
BYN 3.444788
BYR 22997.944348
BZD 2.357308
CAD 1.616486
CDF 3002.053142
CHF 0.931885
CLF 0.027239
CLP 1068.571028
CNY 8.261601
CNH 8.251715
COP 4494.45541
CRC 585.383681
CUC 1.173365
CUP 31.094159
CVE 110.356654
CZK 24.322262
DJF 208.718899
DKK 7.469058
DOP 73.420665
DZD 152.282774
EGP 55.701142
ERN 17.600468
ETB 182.087276
FJD 2.683896
FKP 0.880157
GBP 0.874526
GEL 3.150516
GGP 0.880157
GHS 13.462181
GIP 0.880157
GMD 85.655547
GNF 10245.552838
GTQ 8.981459
GYD 245.223664
HKD 9.127767
HNL 30.878119
HRK 7.532879
HTG 153.677633
HUF 386.567869
IDR 19695.509941
ILS 3.76599
IMP 0.880157
INR 105.136335
IQD 1535.468701
IRR 49398.645621
ISK 147.210343
JEP 0.880157
JMD 187.544961
JOD 0.831933
JPY 184.814279
KES 151.376059
KGS 102.610622
KHR 4703.906708
KMF 492.81343
KPW 1056.02802
KRW 1736.943149
KWD 0.360833
KYD 0.976807
KZT 606.561179
LAK 25385.542435
LBP 104960.335779
LKR 362.89366
LRD 207.457879
LSL 19.662411
LTL 3.464641
LVL 0.709756
LYD 6.353141
MAD 10.743823
MDL 19.843057
MGA 5330.313385
MKD 61.60011
MMK 2464.431858
MNT 4166.879392
MOP 9.394362
MRU 46.907758
MUR 54.17501
MVR 18.128533
MWK 2032.444691
MXN 21.122085
MYR 4.783227
MZN 74.995458
NAD 19.662747
NGN 1711.915715
NIO 43.136009
NOK 11.894511
NPR 168.034124
NZD 2.029398
OMR 0.45116
PAB 1.172073
PEN 3.947178
PGK 4.986162
PHP 68.993251
PKR 328.389238
PLN 4.205643
PYG 7863.363174
QAR 4.273149
RON 5.086416
RSD 117.383056
RUB 93.018839
RWF 1706.580996
SAR 4.401058
SBD 9.559106
SCR 16.336993
SDG 705.789525
SEK 10.866224
SGD 1.514473
SHP 0.880327
SLE 28.219844
SLL 24604.87134
SOS 668.652483
SRD 45.105889
STD 24286.276292
STN 24.520365
SVC 10.255474
SYP 12975.512305
SZL 19.659909
THB 36.586091
TJS 10.800924
TMT 4.106776
TND 3.430849
TOP 2.825181
TRY 50.228508
TTD 7.955573
TWD 36.975015
TZS 2914.028456
UAH 49.558404
UGX 4192.481957
USD 1.173365
UYU 46.018219
UZS 14090.462297
VES 331.076119
VND 30899.967624
VUV 141.511723
WST 3.271124
XAF 656.488242
XAG 0.017038
XAU 0.000266
XCD 3.171076
XCG 2.112445
XDR 0.816461
XOF 656.488242
XPF 119.331742
YER 279.730202
ZAR 19.609678
ZMK 10561.685231
ZMW 26.518459
ZWL 377.822893
  • SCS

    0.0200

    16.14

    +0.12%

  • CMSC

    -0.1200

    23.17

    -0.52%

  • RIO

    0.6900

    78.32

    +0.88%

  • BCC

    -2.9300

    74.77

    -3.92%

  • RBGPF

    0.0000

    80.22

    0%

  • BCE

    -0.0100

    22.84

    -0.04%

  • GSK

    0.3200

    48.61

    +0.66%

  • NGG

    -0.2800

    76.11

    -0.37%

  • JRI

    -0.0500

    13.38

    -0.37%

  • RELX

    0.0800

    40.73

    +0.2%

  • VOD

    0.0400

    12.84

    +0.31%

  • CMSD

    -0.0300

    23.25

    -0.13%

  • BTI

    -0.5900

    56.45

    -1.05%

  • BP

    0.6300

    33.94

    +1.86%

  • AZN

    0.7500

    91.36

    +0.82%

  • RYCEF

    0.2800

    15.68

    +1.79%

Nobel chemistry winner sees engineered proteins solving tough problems
Nobel chemistry winner sees engineered proteins solving tough problems / Photo: Ian C. Haydon - UW Medecine Institute for Protein Design/AFP

Nobel chemistry winner sees engineered proteins solving tough problems

Whether it's battling tumors or breaking down plastic, American scientist David Baker, co-recipient of this year's Nobel Prize in Chemistry, has an answer: engineering proteins that don't naturally exist -- a concept once dismissed as "crazy."

Text size:

Today, proteins with novel functions are flowing steadily out of his lab, with an endless list of potential applications ranging from ultra-targeted therapies to the development of new vaccines.

"Across the range of problems that we face today in medicine and health, sustainability, energy, and technology, I think the potential for protein design is enormous," Baker told AFP via video call from Seattle, hours after learning of his Nobel win alongside two other laureates.

Proteins are organic molecules that play a fundamental role in almost every function of living organisms, from muscle contraction and food digestion to neuron activation and more.

"The ones in nature evolved to solve all the problems that were faced during natural selection," explained the 62-year-old University of Washington professor.

"But humans face new problems today," added the biochemist and computational biologist.

"We're heating up the planet, so we need new solutions in ecology and sustainability. We live longer, so there's new diseases which are relevant, like Alzheimer's disease. There's new pathogens like coronavirus."

Rather than leave these problems up to evolution -- a "brutal" solution that would take a very, very long time -- "with new proteins, we can solve those problems, but in a very short time," he said.

- From fringe to mainstream -

All proteins are composed of chains of amino acids, whose sequence dictates their shape -- and ultimately their function.

For decades, scientists have tried to determine protein structures based on these amino acid sequences.

In the late 1990s, Baker made strides towards solving this problem with a computer software he developed called Rosetta.

His success prompted a shift his focus to the reverse approach: starting with a desired shape and using Rosetta to identify the corresponding amino acid sequence. This sequence can then be introduced into bacteria, which synthesize the new protein that can be harvested and studied.

In 2003, he published his breakthrough finding -- the creation of the first-ever protein not found in nature -- though it still lacked a defined function.

"Then we started trying to design proteins that actually would do useful things," Baker recalled. "And that's when people, I think, really started thinking it was crazy."

But "for the last 20 years -— and really, most recently, the last five years -— we've been able to make proteins that do all kinds of amazing things," he said. Rosetta meanwhile has been progressively improved to incorporate artificial intelligence.

"I think what's kind of funny now is that the lunatic fringe, which pretty much no one was doing, has now entered the mainstream," he added with a laugh.

- Keys that fit locks -

How do scientists decide what shape a new protein needs to achieve the desired function?

Baker gives the example of a tumor. "We know some protein that's on the surface of that tumor, and we know its shape. What we do is we design a protein that acts like a key fitting into a lock," he explained.

Another application: breaking down plastic. In this case, a protein is designed to attach itself to the plastic molecule, accompanied by chemical compounds to "cut" it.

In medicine, this technology has already been used in a Covid-19 vaccine approved in South Korea. Researchers are also exploring its potential to create new materials.

"In biology, we have tooth and bone, we have shells, which are made by proteins interacting with inorganic compounds like calcium carbonate or calcium phosphate," says Baker, envisioning proteins interacting with other compounds to create entirely new materials with unique properties.

Greenhouse gas capture, a universal flu vaccine, improved antivenom -- Baker's wish list goes on and on.

"As protein design becomes more powerful, I'm incredibly excited about all the problems that we will be able to solve."

R.El-Zarouni--DT