Dubai Telegraph - What is microRNA? Nobel-winning discovery explained

EUR -
AED 4.309185
AFN 77.664833
ALL 96.578153
AMD 447.171387
ANG 2.100795
AOA 1075.974916
ARS 1700.476811
AUD 1.767714
AWG 2.11499
AZN 1.993018
BAM 1.957417
BBD 2.36071
BDT 143.349055
BGN 1.95623
BHD 0.4424
BIF 3465.69311
BMD 1.173365
BND 1.515258
BOB 8.099727
BRL 6.513937
BSD 1.172048
BTN 105.019984
BWP 16.486341
BYN 3.444788
BYR 22997.944348
BZD 2.357308
CAD 1.616486
CDF 3002.053142
CHF 0.931885
CLF 0.027239
CLP 1068.571028
CNY 8.261601
CNH 8.251715
COP 4494.45541
CRC 585.383681
CUC 1.173365
CUP 31.094159
CVE 110.356654
CZK 24.322262
DJF 208.718899
DKK 7.469058
DOP 73.420665
DZD 152.282774
EGP 55.701142
ERN 17.600468
ETB 182.087276
FJD 2.683896
FKP 0.880157
GBP 0.874526
GEL 3.150516
GGP 0.880157
GHS 13.462181
GIP 0.880157
GMD 85.655547
GNF 10245.552838
GTQ 8.981459
GYD 245.223664
HKD 9.127767
HNL 30.878119
HRK 7.532879
HTG 153.677633
HUF 386.567869
IDR 19695.509941
ILS 3.76599
IMP 0.880157
INR 105.136335
IQD 1535.468701
IRR 49398.645621
ISK 147.210343
JEP 0.880157
JMD 187.544961
JOD 0.831933
JPY 184.814279
KES 151.376059
KGS 102.610622
KHR 4703.906708
KMF 492.81343
KPW 1056.02802
KRW 1736.943149
KWD 0.360833
KYD 0.976807
KZT 606.561179
LAK 25385.542435
LBP 104960.335779
LKR 362.89366
LRD 207.457879
LSL 19.662411
LTL 3.464641
LVL 0.709756
LYD 6.353141
MAD 10.743823
MDL 19.843057
MGA 5330.313385
MKD 61.60011
MMK 2464.431858
MNT 4166.879392
MOP 9.394362
MRU 46.907758
MUR 54.17501
MVR 18.128533
MWK 2032.444691
MXN 21.122085
MYR 4.783227
MZN 74.995458
NAD 19.662747
NGN 1711.915715
NIO 43.136009
NOK 11.894511
NPR 168.034124
NZD 2.029398
OMR 0.45116
PAB 1.172073
PEN 3.947178
PGK 4.986162
PHP 68.993251
PKR 328.389238
PLN 4.205643
PYG 7863.363174
QAR 4.273149
RON 5.086416
RSD 117.383056
RUB 93.018839
RWF 1706.580996
SAR 4.401058
SBD 9.559106
SCR 16.336993
SDG 705.789525
SEK 10.866224
SGD 1.514473
SHP 0.880327
SLE 28.219844
SLL 24604.87134
SOS 668.652483
SRD 45.105889
STD 24286.276292
STN 24.520365
SVC 10.255474
SYP 12975.512305
SZL 19.659909
THB 36.586091
TJS 10.800924
TMT 4.106776
TND 3.430849
TOP 2.825181
TRY 50.228508
TTD 7.955573
TWD 36.975015
TZS 2914.028456
UAH 49.558404
UGX 4192.481957
USD 1.173365
UYU 46.018219
UZS 14090.462297
VES 331.076119
VND 30899.967624
VUV 141.511723
WST 3.271124
XAF 656.488242
XAG 0.017038
XAU 0.000266
XCD 3.171076
XCG 2.112445
XDR 0.816461
XOF 656.488242
XPF 119.331742
YER 279.730202
ZAR 19.609678
ZMK 10561.685231
ZMW 26.518459
ZWL 377.822893
  • SCS

    0.0200

    16.14

    +0.12%

  • RYCEF

    0.2800

    15.68

    +1.79%

  • CMSD

    -0.0300

    23.25

    -0.13%

  • NGG

    -0.2800

    76.11

    -0.37%

  • VOD

    0.0400

    12.84

    +0.31%

  • RIO

    0.6900

    78.32

    +0.88%

  • CMSC

    -0.1200

    23.17

    -0.52%

  • GSK

    0.3200

    48.61

    +0.66%

  • RBGPF

    0.0000

    80.22

    0%

  • AZN

    0.7500

    91.36

    +0.82%

  • BCC

    -2.9300

    74.77

    -3.92%

  • RELX

    0.0800

    40.73

    +0.2%

  • JRI

    -0.0500

    13.38

    -0.37%

  • BCE

    -0.0100

    22.84

    -0.04%

  • BTI

    -0.5900

    56.45

    -1.05%

  • BP

    0.6300

    33.94

    +1.86%

What is microRNA? Nobel-winning discovery explained
What is microRNA? Nobel-winning discovery explained / Photo: Jonathan NACKSTRAND - AFP

What is microRNA? Nobel-winning discovery explained

The Nobel Prize in Medicine was awarded on Monday to two US scientists for discovering microRNA, a previously unknown type of genetic switch which is hoped can pave the way for new medical breakthroughs.

Text size:

But while several treatments and tests are under development using microRNAs against cancer, heart disease, viruses and other illnesses, none have actually yet reached patients.

And the world paid little attention when the new Nobel laureates Victor Ambros and Gary Ruvkun revealed their discovery decades ago, thinking it was just "something weird about worms", Cambridge University geneticist Eric Miska told AFP.

Here is an explainer about how exactly these tiny genetic switches work inside our bodies.

- What is microRNA? -

Each cell in the human body has the same set of instructions, called DNA. Some turn into brain cells, while others become muscles.

So how do the cells know what to become? The relevant part of the DNA's instructions is pointed to via a process called gene regulation.

Ribonucleic acid (RNA) normally serves as a messenger. It delivers the instructions from the DNA to proteins, which are the building blocks of life that turn cells into brains -- or muscles.

Miska gave the example of the messenger RNA vaccines rolled out against Covid-19 during the pandemic, which insert a message with new instructions to build proteins that block viruses.

But the two new Nobel winners Ambros and Ruvkun discovered a whole new type of gene regulator that had previously been overlooked by science.

Rather than being the messenger which relays information, microRNA instead acts as a switch to turn other genes off and on.

"This was a whole new level of control that we had totally missed," said Miska, who has worked on microRNA for two decades, including with the new Nobel laureates.

"The discovery of microRNAs brought an additional level of complexity by revealing that regions that were thought to be non-coding play a role in gene regulation," French researcher Benoit Ballester told AFP.

- What did the Nobel winners do? -

Back in the 1980s, Ambros and Ruvkun had been working separately on how genes interact in one-millimetre-long roundworms called C.elegans.

When they compared their work, it led to the discovery of microRNA. Ambros revealed the finding in a 1993 paper.

"Nobody really paid much attention," Miska said, explaining that most scientists at the time thought it only applied to worms.

Then in 2000, Ruvkun published research showing that microRNA is present right across the animal kingdom, including in humans and even some viruses.

"This was not just something weird that worms do, but in fact all animals and plants are totally dependent for development and normal function on them," Miska said.

More than a thousand genes that respond to microRNAs are now believed to be in the human body.

- How could this help us? -

There are numerous new treatments and tests using microRNA that are undergoing trials but none have been made widely available.

"Though there are no very clear applications available yet in microRNAs, understanding them, knowing that they exist, understanding their counter-regulatory networks, is always the first step," the Karolinska Institute's Gunilla Karlsson Hedestam told journalists in Stockholm.

MicroRNAs are particularly promising for fighting cancer because some of these switches "act as a tumour suppressor, so they put a brake on cells dividing inappropriately," Miska said.

Others, meanwhile, induce "cells to divide, which can lead to cancer", he added.

Because many viruses use microRNAs, several antiviral drugs are at varying stages of development, including for hepatitis C.

One complicating factor has been that microRNAs can be unstable.

But scientists also hope they can be used as a test called a "biomarker", which could reveal what type of cancer a patient could be suffering from, for example.

- What next? -

It also appears probable that microRNAs could be involved in the evolution of our species, Miska said.

 

While human brains are difficult to study, Miska hoped future research will discover more.

I.Khan--DT