Dubai Telegraph - Researchers dig up secrets of 'self-healing' Roman concrete

EUR -
AED 4.313468
AFN 77.598705
ALL 96.698386
AMD 447.792527
ANG 2.102883
AOA 1077.044807
ARS 1692.205144
AUD 1.764354
AWG 2.114155
AZN 2.001365
BAM 1.955767
BBD 2.361861
BDT 143.307608
BGN 1.957508
BHD 0.440693
BIF 3466.042156
BMD 1.17453
BND 1.514475
BOB 8.102865
BRL 6.365607
BSD 1.17268
BTN 106.04923
BWP 15.537741
BYN 3.457042
BYR 23020.795811
BZD 2.358461
CAD 1.618445
CDF 2630.948518
CHF 0.936843
CLF 0.027253
CLP 1069.11676
CNY 8.28573
CNH 8.284609
COP 4466.125466
CRC 586.590211
CUC 1.17453
CUP 31.125056
CVE 110.26316
CZK 24.276491
DJF 208.826515
DKK 7.472132
DOP 74.548756
DZD 151.60847
EGP 55.571073
ERN 17.617956
ETB 183.229742
FJD 2.668303
FKP 0.879936
GBP 0.880161
GEL 3.175767
GGP 0.879936
GHS 13.461775
GIP 0.879936
GMD 85.741137
GNF 10198.829794
GTQ 8.98185
GYD 245.335906
HKD 9.138141
HNL 30.873485
HRK 7.537789
HTG 153.707435
HUF 385.234681
IDR 19536.845016
ILS 3.785271
IMP 0.879936
INR 106.37734
IQD 1536.174363
IRR 49474.161194
ISK 148.465122
JEP 0.879936
JMD 187.756867
JOD 0.832789
JPY 182.950774
KES 151.217476
KGS 102.713135
KHR 4694.921647
KMF 492.719958
KPW 1057.060817
KRW 1731.880759
KWD 0.360233
KYD 0.977284
KZT 611.589793
LAK 25422.575728
LBP 105012.44747
LKR 362.353953
LRD 206.976546
LSL 19.78457
LTL 3.468083
LVL 0.710462
LYD 6.369894
MAD 10.78842
MDL 19.823669
MGA 5194.913303
MKD 61.548973
MMK 2466.385496
MNT 4167.553805
MOP 9.403343
MRU 46.930217
MUR 53.93488
MVR 18.092159
MWK 2033.466064
MXN 21.157878
MYR 4.812408
MZN 75.064681
NAD 19.78457
NGN 1706.088063
NIO 43.15928
NOK 11.906572
NPR 169.679168
NZD 1.992587
OMR 0.449462
PAB 1.17268
PEN 3.948134
PGK 5.054916
PHP 69.43241
PKR 328.640215
PLN 4.225315
PYG 7876.868545
QAR 4.273829
RON 5.092651
RSD 117.378041
RUB 93.298443
RWF 1706.771516
SAR 4.407079
SBD 9.603843
SCR 17.649713
SDG 706.484352
SEK 10.887784
SGD 1.517615
SHP 0.881202
SLE 28.335591
SLL 24629.319496
SOS 668.988835
SRD 45.275842
STD 24310.407882
STN 24.499591
SVC 10.260829
SYP 12986.886804
SZL 19.77767
THB 37.109332
TJS 10.77682
TMT 4.122602
TND 3.428143
TOP 2.827988
TRY 50.011936
TTD 7.957867
TWD 36.804032
TZS 2902.351563
UAH 49.548473
UGX 4167.930442
USD 1.17453
UYU 46.019232
UZS 14127.764225
VES 314.116117
VND 30897.196663
VUV 142.580188
WST 3.259869
XAF 655.946053
XAG 0.018954
XAU 0.000273
XCD 3.174228
XCG 2.113465
XDR 0.815786
XOF 655.946053
XPF 119.331742
YER 280.129715
ZAR 19.820741
ZMK 10572.187233
ZMW 27.059548
ZWL 378.198309
  • RBGPF

    0.0000

    81.17

    0%

  • SCS

    0.0200

    16.14

    +0.12%

  • BCC

    0.2500

    76.51

    +0.33%

  • NGG

    0.2400

    74.93

    +0.32%

  • GSK

    -0.0700

    48.81

    -0.14%

  • JRI

    -0.0200

    13.7

    -0.15%

  • AZN

    -0.4600

    89.83

    -0.51%

  • RYCEF

    -0.2500

    14.6

    -1.71%

  • CMSC

    -0.1300

    23.3

    -0.56%

  • RELX

    0.1000

    40.38

    +0.25%

  • BCE

    0.3100

    23.71

    +1.31%

  • RIO

    -1.0800

    75.66

    -1.43%

  • CMSD

    -0.1500

    23.25

    -0.65%

  • BP

    -0.2700

    35.26

    -0.77%

  • VOD

    0.0500

    12.59

    +0.4%

  • BTI

    -1.2700

    57.1

    -2.22%

Researchers dig up secrets of 'self-healing' Roman concrete
Researchers dig up secrets of 'self-healing' Roman concrete / Photo: Filippo MONTEFORTE - AFP

Researchers dig up secrets of 'self-healing' Roman concrete

How have Rome's ancient aqueducts and architectural marvels such as the Pantheon, which features the world's largest unreinforced concrete dome, endured the test of time?

Text size:

Researchers at the Massachusetts Institute of Technology (MIT) and other institutions believe they have uncovered the mystery of the durability of the 2,000-year-old structures -- self-healing concrete.

The secret lies in an ingredient of the ancient concrete used by the Romans that the researchers, whose findings are published in the latest edition of the journal Science Advances, said has been overlooked in previous studies.

The durability of the concrete used by the Romans has most frequently been attributed to the use of volcanic ash from Pozzuoli on the Bay of Naples, which was shipped across the Roman empire for construction.

But the researchers focused their attention on another component of the ancient concrete mix, small white chunks called "lime clasts."

"Ever since I first began working with ancient Roman concrete, I've always been fascinated by these features," said MIT professor of civil and environmental engineering Admir Masic, an author of the study.

"These are not found in modern concrete formulations, so why are they present in these ancient materials?"

The researchers said the lime clasts had been thought to be the result of "sloppy mixing practices" or poor-quality raw materials.

But they are in fact what gives the ancient concrete a "previously unrecognized self-healing capability."

"The idea that the presence of these lime clasts was simply attributed to low quality control always bothered me," said Masic.

"If the Romans put so much effort into making an outstanding construction material... why would they put so little effort into ensuring the production of a well-mixed final product?"

For the study, the researchers examined 2,000-year-old Roman concrete samples from the masonry mortar of a city wall in Privernum, Italy.

They found that a process known as "hot mixing" is what gave the concrete its "super-durable nature" in which the Romans mixed quicklime with water and the volcanic ash at high temperatures.

"The benefits of hot mixing are twofold," Masic said.

"First, when the overall concrete is heated to high temperatures, it allows chemistries that are not possible if you only used slaked lime, producing high-temperature-associated compounds that would not otherwise form.

"Second, this increased temperature significantly reduces curing and setting times since all the reactions are accelerated, allowing for much faster construction," he said.

It is the lime clasts that give the ancient concrete its "self-healing functionality," according to the research team, which also included scientists from Switzerland and Italy.

Tiny cracks in the concrete would tend to travel through the high-surface-area lime clasts and, when exposed to water, would recrystallize as calcium carbonate, filling the crack almost like glue.

"These reactions take place spontaneously and therefore automatically heal the cracks before they spread," said the researchers, who conducted tests using modern concrete and the ancient formula.

F.A.Dsouza--DT