Dubai Telegraph - Scientists find oldest Martian meteorite's original home

EUR -
AED 4.39647
AFN 79.010777
ALL 96.7817
AMD 453.834235
ANG 2.142963
AOA 1097.770504
ARS 1728.714548
AUD 1.697422
AWG 2.154839
AZN 2.03606
BAM 1.959479
BBD 2.410826
BDT 146.2646
BGN 2.010429
BHD 0.451359
BIF 3555.483592
BMD 1.197133
BND 1.514243
BOB 8.270527
BRL 6.218144
BSD 1.196947
BTN 110.127756
BWP 15.609305
BYN 3.381248
BYR 23463.797441
BZD 2.40732
CAD 1.614512
CDF 2702.527156
CHF 0.914657
CLF 0.026043
CLP 1028.337353
CNY 8.318156
CNH 8.313415
COP 4373.125105
CRC 592.211831
CUC 1.197133
CUP 31.724012
CVE 110.884406
CZK 24.328187
DJF 212.75416
DKK 7.467485
DOP 75.419599
DZD 154.65435
EGP 56.059366
ERN 17.956988
ETB 186.200377
FJD 2.621956
FKP 0.868641
GBP 0.866784
GEL 3.226251
GGP 0.868641
GHS 13.114581
GIP 0.868641
GMD 88.00166
GNF 10476.106643
GTQ 9.184243
GYD 250.420144
HKD 9.344996
HNL 31.588305
HRK 7.535923
HTG 156.894557
HUF 380.549872
IDR 20097.400931
ILS 3.704161
IMP 0.868641
INR 109.934056
IQD 1568.04388
IRR 50429.2077
ISK 144.996855
JEP 0.868641
JMD 187.812603
JOD 0.848796
JPY 183.318702
KES 154.514154
KGS 104.688869
KHR 4816.661042
KMF 493.218172
KPW 1077.499653
KRW 1713.586906
KWD 0.366789
KYD 0.997473
KZT 601.288873
LAK 25747.338611
LBP 102474.544325
LKR 370.335275
LRD 221.435728
LSL 18.885656
LTL 3.534821
LVL 0.724134
LYD 7.519117
MAD 10.83945
MDL 20.132798
MGA 5357.167785
MKD 61.629467
MMK 2514.472536
MNT 4270.0428
MOP 9.623167
MRU 47.746641
MUR 54.05048
MVR 18.507873
MWK 2075.496582
MXN 20.615098
MYR 4.704817
MZN 76.329328
NAD 18.885656
NGN 1661.703631
NIO 44.052706
NOK 11.415096
NPR 176.204811
NZD 1.969152
OMR 0.460301
PAB 1.196947
PEN 4.002915
PGK 5.201766
PHP 70.529025
PKR 334.819598
PLN 4.205952
PYG 8032.0796
QAR 4.363392
RON 5.097505
RSD 117.394378
RUB 90.079313
RWF 1746.378689
SAR 4.490097
SBD 9.670049
SCR 16.594223
SDG 720.018515
SEK 10.539112
SGD 1.512703
SHP 0.898159
SLE 29.091786
SLL 25103.269553
SOS 682.882058
SRD 45.495226
STD 24778.226215
STN 24.546083
SVC 10.473663
SYP 13239.776792
SZL 18.879445
THB 37.386326
TJS 11.179589
TMT 4.189964
TND 3.427835
TOP 2.882408
TRY 52.027807
TTD 8.124253
TWD 37.561827
TZS 3070.644609
UAH 51.226874
UGX 4257.99405
USD 1.197133
UYU 45.295038
UZS 14565.345295
VES 429.143458
VND 31125.445585
VUV 143.139968
WST 3.252382
XAF 657.190824
XAG 0.010137
XAU 0.00022
XCD 3.23531
XCG 2.15725
XDR 0.816474
XOF 657.190824
XPF 119.331742
YER 285.394994
ZAR 18.826046
ZMK 10775.631872
ZMW 23.669438
ZWL 385.476184
  • SCS

    0.0200

    16.14

    +0.12%

  • CMSC

    0.0100

    23.71

    +0.04%

  • CMSD

    0.0392

    24.09

    +0.16%

  • RIO

    1.7600

    95.13

    +1.85%

  • BCE

    0.2200

    25.49

    +0.86%

  • RBGPF

    0.0000

    82.4

    0%

  • BCC

    -0.5500

    80.3

    -0.68%

  • JRI

    -0.0500

    12.94

    -0.39%

  • NGG

    0.3900

    85.07

    +0.46%

  • GSK

    0.5600

    50.66

    +1.11%

  • AZN

    -0.6300

    92.59

    -0.68%

  • BP

    0.3400

    38.04

    +0.89%

  • BTI

    0.0600

    60.22

    +0.1%

  • RYCEF

    -0.1700

    16.43

    -1.03%

  • VOD

    0.1400

    14.71

    +0.95%

  • RELX

    -1.2100

    36.17

    -3.35%

Scientists find oldest Martian meteorite's original home
Scientists find oldest Martian meteorite's original home / Photo: - - NASA/AFP/File

Scientists find oldest Martian meteorite's original home

Scientists announced Tuesday they had found the crater from which the oldest known Martian meteorite was originally blasted towards Earth, a discovery that could provide clues into how our own planet was formed.

Text size:

The meteorite NWA 7034, nicknamed Black Beauty, has fascinated geologists since it was discovered in the Sahara Desert in 2011.

It fits easily in the hand, weighing just over 300 grams (10.6 ounces), and contains a mix of materials including zircons, which date back nearly 4.5 billion years.

"That makes it one of the oldest rocks studied in the history of geology," Sylvain Bouley, a planetary scientist at France's Paris-Saclay University, told AFP.

Its journey dates back to the solar system's infancy, "about 80 million years after the planets began forming", said Bouley, who co-authored a new study on the meteorite.

Tectonic plates long ago covered up Earth's ancient crust, meaning that "we have lost this primitive history of our planet", Bouley said.

But Black Beauty could offer "an open book on a planet's first moments", he added.

To open that book, a team of researchers at Australia's Curtin University set out to find the meteorite's original home on Mars.

They knew that it was likely an asteroid hitting the red planet that sent Black Beauty shooting up into space.

The impact "had enough force to eject the rocks at very high speed -- more than five kilometres (three miles) a second -- to escape the Martian gravity", Curtin's Anthony Lagain, the lead author of the study in Nature Communications, told AFP.

Such a crater would have to be massive -- at least three kilometres in diameter.

The problem? The pockmarked surface of Mars has around 80,000 craters at least that big.

- Following the clues -

But the researchers had a clue: by measuring Black Beauty's exposure to cosmic rays, they knew it was dislodged from its first home around five million years ago.

"So, we were looking for a crater that was very young and large," Lagain said.

Another clue was that its composition showed it had suddenly heated up around 1.5 million years ago -- likely by the impact of a second asteroid.

The team then created an algorithm and used a supercomputer to trawl through images of 90 million craters taken by a NASA satellite.

That narrowed it down to 19 craters, allowing the researchers to rule out the remaining suspects.

They found that Black Beauty was dug up from its first home by an asteroid that struck around 1.5 billion years ago, forming the 40-kilometre Khujirt crater.

Then a few million years ago, another asteroid hit not far away, creating the 10-kilometre Karratha crater and shooting the Black Beauty towards Earth.

The region in Mars' southern hemisphere is rich in the elements potassium and thorium, just like Black Beauty.

Another factor was that Black Beauty is the only Martian meteorite that is highly magnetised.

"The region where Karratha was found is the most magnetised on Mars," Lagain said.

Known as the Terra Cimmeria—Sirenum province, it is "a relic of the early crustal processes on Mars, and thus, a region of high interest for future missions," the study said.

Bouley pointed to a "bias" in the currently planned missions to Mars in favour of searching for signs of water and life.

But to understand how planets first form would answer some fundamental questions, Lagain said, including "how Earth became such an exceptional planet in the Universe".

R.Mehmood--DT