Dubai Telegraph - 'Wetware': Scientists use human mini-brains to power computers

EUR -
AED 4.278799
AFN 77.332466
ALL 96.575617
AMD 445.1876
ANG 2.085576
AOA 1068.388216
ARS 1684.735918
AUD 1.75613
AWG 2.09862
AZN 1.984015
BAM 1.955298
BBD 2.351906
BDT 142.873314
BGN 1.955951
BHD 0.439244
BIF 3450.13256
BMD 1.165091
BND 1.512264
BOB 8.068928
BRL 6.18139
BSD 1.167705
BTN 104.895516
BWP 15.51395
BYN 3.380546
BYR 22835.780461
BZD 2.348507
CAD 1.624445
CDF 2598.152383
CHF 0.935795
CLF 0.027249
CLP 1068.972737
CNY 8.239114
CNH 8.235468
COP 4423.838268
CRC 572.550529
CUC 1.165091
CUP 30.874907
CVE 110.236695
CZK 24.215228
DJF 207.947498
DKK 7.468599
DOP 74.200629
DZD 151.573688
EGP 55.422094
ERN 17.476363
ETB 182.080866
FJD 2.631882
FKP 0.872491
GBP 0.87341
GEL 3.139877
GGP 0.872491
GHS 13.301585
GIP 0.872491
GMD 85.051785
GNF 10146.786517
GTQ 8.944742
GYD 244.307269
HKD 9.07004
HNL 30.745973
HRK 7.537941
HTG 152.955977
HUF 381.927241
IDR 19422.821609
ILS 3.76036
IMP 0.872491
INR 104.791181
IQD 1529.71378
IRR 49079.451231
ISK 149.003201
JEP 0.872491
JMD 187.141145
JOD 0.82607
JPY 180.711448
KES 150.704566
KGS 101.886647
KHR 4676.939601
KMF 491.66861
KPW 1048.573823
KRW 1715.887947
KWD 0.35759
KYD 0.973154
KZT 590.220982
LAK 25331.604319
LBP 104570.198293
LKR 360.448994
LRD 206.107962
LSL 19.822595
LTL 3.44021
LVL 0.704752
LYD 6.347397
MAD 10.774234
MDL 19.862985
MGA 5193.64414
MKD 61.624177
MMK 2446.620372
MNT 4131.997126
MOP 9.362236
MRU 46.266921
MUR 53.675364
MVR 17.954132
MWK 2024.871384
MXN 21.185039
MYR 4.789718
MZN 74.447687
NAD 19.822595
NGN 1690.547045
NIO 42.970442
NOK 11.774198
NPR 167.831186
NZD 2.017279
OMR 0.448002
PAB 1.1678
PEN 3.926892
PGK 4.952877
PHP 68.813177
PKR 329.883811
PLN 4.230421
PYG 8097.955442
QAR 4.268104
RON 5.093784
RSD 117.405001
RUB 89.428762
RWF 1699.056442
SAR 4.372624
SBD 9.581501
SCR 15.83572
SDG 700.739077
SEK 10.962357
SGD 1.508886
SHP 0.87412
SLE 26.796781
SLL 24431.370198
SOS 666.226074
SRD 45.023191
STD 24115.028075
STN 24.494657
SVC 10.21742
SYP 12883.858981
SZL 19.816827
THB 37.09708
TJS 10.731491
TMT 4.077818
TND 3.427635
TOP 2.805259
TRY 49.532165
TTD 7.917001
TWD 36.455959
TZS 2842.8212
UAH 49.235746
UGX 4139.936989
USD 1.165091
UYU 45.74845
UZS 13910.428222
VES 289.625154
VND 30711.794538
VUV 142.222766
WST 3.250779
XAF 655.7858
XAG 0.020016
XAU 0.000276
XCD 3.148716
XCG 2.104569
XDR 0.815587
XOF 655.791427
XPF 119.331742
YER 277.75676
ZAR 19.715959
ZMK 10487.212054
ZMW 26.828226
ZWL 375.158775
  • RBGPF

    0.0000

    78.35

    0%

  • CMSC

    0.0400

    23.48

    +0.17%

  • RYCEF

    0.4600

    14.67

    +3.14%

  • RIO

    -0.5500

    73.73

    -0.75%

  • NGG

    -0.5800

    75.91

    -0.76%

  • GSK

    -0.4000

    48.57

    -0.82%

  • RELX

    0.3500

    40.54

    +0.86%

  • VOD

    0.0500

    12.64

    +0.4%

  • BTI

    0.5300

    58.04

    +0.91%

  • AZN

    -0.8200

    90.03

    -0.91%

  • SCS

    -0.1200

    16.23

    -0.74%

  • BP

    -0.0100

    37.23

    -0.03%

  • BCC

    -2.3000

    74.26

    -3.1%

  • JRI

    0.0500

    13.75

    +0.36%

  • CMSD

    -0.0300

    23.32

    -0.13%

  • BCE

    0.0400

    23.22

    +0.17%

'Wetware': Scientists use human mini-brains to power computers
'Wetware': Scientists use human mini-brains to power computers / Photo: Fabrice COFFRINI - AFP

'Wetware': Scientists use human mini-brains to power computers

Inside a lab in the picturesque Swiss town of Vevey, a scientist gives tiny clumps of human brain cells the nutrient-rich fluid they need to stay alive.

Text size:

It is vital these mini-brains remain healthy, because they are serving as rudimentary computer processors -- and unlike your laptop, once they die, they cannot be rebooted.

This new field of research, called biocomputing or "wetware", aims to harness the evolutionarily honed yet still mysterious computing power of the human brain.

During a tour of Swiss start-up FinalSpark's lab, co-founder Fred Jordan told AFP he believes that processors using brain cells will one day replace the chips powering the artificial intelligence boom.

The supercomputers behind AI tools like ChatGPT currently use silicon semiconductors to simulate the neurons and networks of the human brain.

"Instead of trying to mimic, let's use the real thing," Jordan said.

Among other potential advantages, biocomputing could help address the skyrocketing energy demands of AI, which have already threatened climate emissions targets and led some tech giants to resort to nuclear power.

"Biological neurons are one million times more energy efficient than artificial neurons," Jordan said. They can also be endlessly reproduced in the lab, unlike the massively in-demand AI chips made by companies like behemoth Nvidia.

But for now, wetware's computing power is a very long way from competing with the hardware that runs the world.

And another question lingers: could these tiny brains become conscious?

- Brain power -

To make its "bioprocessors," FinalSpark first purchases stem cells. These cells, which were originally human skin cells from anonymous human donors, can become any cell in the body.

FinalSpark's scientists then turn them into neurons, which are collected into millimetre-wide clumps called brain organoids.

They are around the size of the brain of a fruit fly larvae, Jordan said.

Electrodes are attached to the organoids in the lab, which allow the scientists to "spy on their internal discussion," he explained.

The scientists can also stimulate the organoids with a small electric current. Whether they respond with a spike in activity -- or not -- is roughly the equivalent of the ones or zeroes in traditional computing.

Ten universities around the world are conducting experiments using FinalSpark's organoids -- the small company's website even has a live feed of the neurons at work.

Benjamin Ward-Cherrier, a researcher at the University of Bristol, used one of the organoids as the brain of a simple robot that managed to distinguish between different braille letters.

There are many challenges, including encoding the data in a way the organoid might understand -- then trying to interpret what the brain cells "spit out," he told AFP.

"Working with robots is very easy by comparison," Ward-Cherrier said with a laugh.

"There's also the fact that they are living cells -- and that means that they do die," he added.

Indeed, Ward-Cherrier was halfway through an experiment when the organoid died and his team had to start over. FinalSpark says the organoids live for up to six months.

At Johns Hopkins University in the United States, researcher Lena Smirnova is using similar organoids to study brain conditions such as autism and Alzheimer's disease in the hopes of finding new treatments.

Biocomputing is currently more "pie in the sky," unlike the "low-hanging fruit" use of the technology for biomedical research -- but that could change dramatically over the next 20 years, she told AFP.

- Do organoids dream of electric sheep? -

All the scientists AFP spoke to dismissed the idea that these tiny balls of cells in petri dishes were at risk of developing anything resembling consciousness.

Jordan acknowledged that "this is at the edge of philosophy," which is why FinalSpark collaborates with ethicists.

He also pointed out that the organoids -- which lack pain receptors -- have around 10,000 neurons, compared to a human brain's 100 billion.

However much about our brains, including how they create consciousness, remains a mystery.

That is why Ward-Cherrier hopes that -- beyond computer processing -- biocomputing will ultimately reveal more about how our brains work.

Back in the lab, Jordan opens the door of what looks like a big fridge containing 16 brain organoids in a tangle of tubes.

Lines suddenly start spiking on the screen next to the incubator, indicating significant neural activity.

The brain cells have no known way of sensing that their door has been opened, and the scientists have spent years trying to figure why this happens.

"We still don't understand how they detect the opening of the door," Jordan admitted.

A.Ansari--DT