Dubai Telegraph - 'Solids full of holes': Nobel-winning materials explained

EUR -
AED 4.400314
AFN 77.881147
ALL 96.814682
AMD 454.172547
ANG 2.144834
AOA 1098.729057
ARS 1730.745379
AUD 1.690809
AWG 2.158218
AZN 2.042821
BAM 1.959124
BBD 2.414607
BDT 146.498583
BGN 2.012185
BHD 0.451686
BIF 3551.270346
BMD 1.198178
BND 1.512786
BOB 8.284057
BRL 6.227767
BSD 1.198839
BTN 110.119313
BWP 15.686617
BYN 3.408698
BYR 23484.290754
BZD 2.411101
CAD 1.620506
CDF 2683.918435
CHF 0.917625
CLF 0.026186
CLP 1033.955485
CNY 8.33291
CNH 8.319544
COP 4397.74497
CRC 595.019577
CUC 1.198178
CUP 31.75172
CVE 110.45288
CZK 24.298095
DJF 213.48135
DKK 7.46704
DOP 75.429249
DZD 154.714803
EGP 56.109364
ERN 17.972671
ETB 186.414713
FJD 2.618439
FKP 0.869432
GBP 0.866031
GEL 3.229063
GGP 0.869432
GHS 13.103234
GIP 0.869432
GMD 87.466656
GNF 10519.982279
GTQ 9.197645
GYD 250.81559
HKD 9.348245
HNL 31.637684
HRK 7.534031
HTG 156.996396
HUF 379.901498
IDR 20117.410294
ILS 3.70231
IMP 0.869432
INR 110.191403
IQD 1570.47137
IRR 50473.252638
ISK 144.787493
JEP 0.869432
JMD 187.928883
JOD 0.849516
JPY 183.431525
KES 154.589225
KGS 104.78044
KHR 4819.23774
KMF 493.649685
KPW 1078.290613
KRW 1708.440222
KWD 0.367097
KYD 0.999099
KZT 604.037467
LAK 25827.933287
LBP 107356.012463
LKR 371.221447
LRD 221.78726
LSL 19.062325
LTL 3.537908
LVL 0.724766
LYD 7.528744
MAD 10.839493
MDL 20.104197
MGA 5349.076452
MKD 61.600431
MMK 2516.151613
MNT 4280.660921
MOP 9.634588
MRU 47.858006
MUR 54.097074
MVR 18.523892
MWK 2078.827408
MXN 20.521616
MYR 4.695675
MZN 76.395464
NAD 19.062325
NGN 1673.830778
NIO 44.115408
NOK 11.440744
NPR 176.1907
NZD 1.969217
OMR 0.460694
PAB 1.198834
PEN 4.011306
PGK 5.131772
PHP 70.569096
PKR 335.375273
PLN 4.204707
PYG 8050.626917
QAR 4.358915
RON 5.095247
RSD 117.400304
RUB 91.721686
RWF 1749.067864
SAR 4.49358
SBD 9.678495
SCR 17.176644
SDG 720.702641
SEK 10.541367
SGD 1.511975
SHP 0.898944
SLE 29.118971
SLL 25125.194783
SOS 683.960562
SRD 45.640962
STD 24799.867551
STN 24.541951
SVC 10.489843
SYP 13251.340431
SZL 19.054412
THB 37.190847
TJS 11.203157
TMT 4.193623
TND 3.428532
TOP 2.884925
TRY 52.020807
TTD 8.136841
TWD 37.52634
TZS 3043.372756
UAH 51.245655
UGX 4292.283258
USD 1.198178
UYU 45.36717
UZS 14504.672432
VES 429.518272
VND 31224.521278
VUV 143.387393
WST 3.265465
XAF 657.071937
XAG 0.010054
XAU 0.000214
XCD 3.238136
XCG 2.160575
XDR 0.817187
XOF 657.06919
XPF 119.331742
YER 285.649307
ZAR 18.761325
ZMK 10785.036009
ZMW 23.826529
ZWL 385.812859
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    0.0000

    82.4

    0%

  • CMSD

    -0.0457

    24.0508

    -0.19%

  • BTI

    -0.1800

    60.16

    -0.3%

  • BCC

    -0.8900

    80.85

    -1.1%

  • GSK

    -0.7000

    50.1

    -1.4%

  • BCE

    -0.2500

    25.27

    -0.99%

  • CMSC

    -0.1000

    23.7

    -0.42%

  • RELX

    -0.9800

    37.38

    -2.62%

  • AZN

    -2.3800

    93.22

    -2.55%

  • NGG

    0.3700

    84.68

    +0.44%

  • RIO

    0.4600

    93.37

    +0.49%

  • BP

    0.0800

    37.7

    +0.21%

  • RYCEF

    -0.5500

    16.6

    -3.31%

  • VOD

    0.0700

    14.57

    +0.48%

  • JRI

    -0.6900

    12.99

    -5.31%

'Solids full of holes': Nobel-winning materials explained
'Solids full of holes': Nobel-winning materials explained / Photo: Jonathan Nackstrand - AFP

'Solids full of holes': Nobel-winning materials explained

The chemistry Nobel was awarded on Wednesday to three scientists who discovered a revolutionary way of making materials full of tiny holes that can do everything from sucking water out of the desert air to capturing climate-warming carbon dioxide.

Text size:

The particularly roomy molecular architecture, called metal-organic frameworks, has also allowed scientists to filter "forever chemicals" from water, smuggle drugs into bodies -- and even slow the ripening of fruit.

After Japan's Susumu Kitagawa, UK-born Richard Robson and American-Jordanian Omar Yaghi won their long-anticipated Nobel Prize, here is what you need to know about their discoveries.

- What are metal-organic frameworks? -

Imagine you turn on the hot water for your morning shower, David Fairen-Jimenez, a professor who studies metal-organic frameworks (MOFs) at the University of Cambridge, told AFP.

The mirror in your bathroom fogs up as water molecules collect on its flat surface -- but it can only absorb so much.

Now imagine this mirror was made of a material that was extremely porous -- full of tiny holes -- and these holes were "the size of a water molecule," Fairen-Jimenez said.

This material would be able to hold far more water -- or other gases -- than seems possible.

At the Nobel ceremony, this secret storage ability was compared to Hermione's magical handbag in Harry Potter.

The inside space of a couple of grams of a particular MOF "holds an area as big as a football pitch," the Nobels said in a statement.

Ross Forgan, a professor of materials chemistry at the University of Glasgow, told AFP to think of MOFs as "solids that are full of holes".

They could look essentially like table salt, but "they have a ridiculously high storage capacity inside them because they are hollow -- they can soak up other molecules like a sponge."

- What did the Nobel-winners do? -

In the 1980s, Robson taught his students at Australia's University of Melbourne about molecular structures using wooden balls that played the role of atoms, connected by rods representing chemical bonds.

One day this inspired him to try to link different kinds of molecules together. By 1989, he had drawn out a crystal structure similar to a diamond's -- except that it was full of massive holes.

French researcher David Farrusseng compared the structure of MOFs to the Eiffel Tower. "By interlocking all the iron beams -- horizontal, vertical, and diagonal -- we see cavities appear," he told AFP.

However Robson's holey structures were unstable, and it took years before anyone could figure out what to do with them.

In 1997, Kitagawa finally managed to show that a MOF could absorb and release methane and other gases.

It was Yaghi who coined the term metal-organic frameworks and demonstrated to the world just how much room there was in materials made from them.

- What can they do? -

Because these frameworks can be assembled in different ways -- somewhat like playing with Lego -- companies and labs around the world have been testing out their capabilities.

"This is a field that's generating incredible enthusiasm and is moving extremely fast," Thierry Loiseau of French research centre CNRS told AFP.

More than 100,000 different kinds have already been reported in scientific literature, according to a Cambridge University database.

"Every single month, there are 500 new MOFs," Fairen-Jimenez said.

He and Forgan agreed that likely the greatest impact MOFs will have on the world are in the areas of capturing carbon and delivering drugs.

Though much hyped, efforts to capture carbon dioxide -- the driver of human-caused global warming -- have so far failed to live up to their promise.

Forgan said he was once "a bit sceptical about carbon capture, but now we're finally refining (the MOFs) to the point where they are meeting all the industrial requirements".

Canadian chemical producer BASF says it is the first company to produce hundreds of tons of MOFs a year, for carbon capture efforts.

And Yaghi himself has demonstrated that a MOF material was able to harvest water vapour from the night air in the desert US state of Arizona.

Once the rising Sun heated up the material, his team collected the drinkable water.

U.Siddiqui--DT