Dubai Telegraph - Energy storage and new materials eyed for chemistry Nobel

EUR -
AED 4.397733
AFN 77.835597
ALL 96.757965
AMD 453.90648
ANG 2.143578
AOA 1098.08556
ARS 1729.718292
AUD 1.697621
AWG 2.156954
AZN 2.035406
BAM 1.957977
BBD 2.413193
BDT 146.41276
BGN 2.011006
BHD 0.451397
BIF 3549.189914
BMD 1.197476
BND 1.5119
BOB 8.279204
BRL 6.2252
BSD 1.198137
BTN 110.054802
BWP 15.677428
BYN 3.406701
BYR 23470.533006
BZD 2.409689
CAD 1.62082
CDF 2682.346551
CHF 0.91756
CLF 0.02617
CLP 1033.350264
CNY 8.328028
CNH 8.316191
COP 4395.168649
CRC 594.670998
CUC 1.197476
CUP 31.733119
CVE 110.388174
CZK 24.299159
DJF 213.356287
DKK 7.466647
DOP 75.385061
DZD 154.67909
EGP 56.072896
ERN 17.962143
ETB 186.305506
FJD 2.625527
FKP 0.868923
GBP 0.866542
GEL 3.227194
GGP 0.868923
GHS 13.095558
GIP 0.868923
GMD 87.415407
GNF 10513.819382
GTQ 9.192257
GYD 250.668656
HKD 9.343009
HNL 31.619149
HRK 7.535236
HTG 156.904423
HUF 380.416024
IDR 20110.175367
ILS 3.709632
IMP 0.868923
INR 110.259115
IQD 1569.551345
IRR 50443.68401
ISK 144.798317
JEP 0.868923
JMD 187.818789
JOD 0.849014
JPY 183.295885
KES 154.49848
KGS 104.719618
KHR 4816.414497
KMF 493.359953
KPW 1077.65892
KRW 1708.906127
KWD 0.367003
KYD 0.998514
KZT 603.683605
LAK 25812.802569
LBP 107293.120341
LKR 371.003975
LRD 221.657331
LSL 19.051158
LTL 3.535836
LVL 0.724341
LYD 7.524333
MAD 10.833143
MDL 20.09242
MGA 5345.942815
MKD 61.691988
MMK 2514.677582
MNT 4278.153191
MOP 9.628944
MRU 47.829969
MUR 53.994324
MVR 18.513564
MWK 2077.609574
MXN 20.544547
MYR 4.70968
MZN 76.351282
NAD 19.051158
NGN 1672.850271
NIO 44.089564
NOK 11.458877
NPR 176.087483
NZD 1.973417
OMR 0.460425
PAB 1.198132
PEN 4.008957
PGK 5.128766
PHP 70.457091
PKR 335.178801
PLN 4.206321
PYG 8045.910637
QAR 4.356361
RON 5.096099
RSD 117.399135
RUB 91.668755
RWF 1748.043211
SAR 4.491067
SBD 9.672825
SCR 16.470637
SDG 720.281738
SEK 10.556537
SGD 1.511808
SHP 0.898417
SLE 29.09489
SLL 25110.475749
SOS 683.559879
SRD 45.614209
STD 24785.339103
STN 24.527573
SVC 10.483698
SYP 13243.577429
SZL 19.043249
THB 37.272043
TJS 11.196593
TMT 4.191167
TND 3.426523
TOP 2.883235
TRY 51.9896
TTD 8.132074
TWD 37.47982
TZS 3065.53864
UAH 51.215634
UGX 4289.768719
USD 1.197476
UYU 45.340592
UZS 14496.175194
VES 429.266648
VND 31217.006375
VUV 143.303392
WST 3.263552
XAF 656.687006
XAG 0.010186
XAU 0.000217
XCD 3.23624
XCG 2.159309
XDR 0.816708
XOF 656.684261
XPF 119.331742
YER 285.475503
ZAR 18.81055
ZMK 10778.71862
ZMW 23.812571
ZWL 385.586839
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    0.0000

    82.4

    0%

  • CMSD

    -0.0457

    24.0508

    -0.19%

  • RYCEF

    -0.5500

    16.6

    -3.31%

  • AZN

    -2.3800

    93.22

    -2.55%

  • NGG

    0.3700

    84.68

    +0.44%

  • RELX

    -0.9800

    37.38

    -2.62%

  • GSK

    -0.7000

    50.1

    -1.4%

  • VOD

    0.0700

    14.57

    +0.48%

  • CMSC

    -0.1000

    23.7

    -0.42%

  • BCE

    -0.2500

    25.27

    -0.99%

  • RIO

    0.4600

    93.37

    +0.49%

  • BTI

    -0.1800

    60.16

    -0.3%

  • BCC

    -0.8900

    80.85

    -1.1%

  • BP

    0.0800

    37.7

    +0.21%

  • JRI

    -0.6900

    12.99

    -5.31%

Energy storage and new materials eyed for chemistry Nobel
Energy storage and new materials eyed for chemistry Nobel / Photo: Jonathan NACKSTRAND - AFP/File

Energy storage and new materials eyed for chemistry Nobel

The development of new compounds and novel ways of storing energy are some of the research fields commentators say could be contenders for the Nobel Prize in Chemistry announced Wednesday.

Text size:

The winner or winners of the prestigious award are scheduled to be unveiled by the Royal Swedish Academy of Sciences in Stockholm at 11:45 am (0945 GMT).

The chemistry prize follows the physics prize, which on Tuesday honoured Briton John Clarke, Frenchman Michel Devoret and American John Martinis for work putting quantum mechanics into action -- enabling the development of all kinds of digital technology.

Lars Brostrom, science editor at public broadcaster Sveriges Radio, told AFP that he felt the chemistry prize "should go to something that has significance for the climate or the environment".

Commentators have for years buzzed about American-Jordanian Omar Yaghi, and Brostrom said he thinks Yaghi's work could fall under the umbrella of climate.

"Because that chemistry can be a catalyst for all kinds of things related to both climate and the environment," Brostrom said.

Yaghi developed a type of customised porous material known as MOF (metal-organic framework), now used in commercial products that can, among other things, absorb and decontaminate toxins, act as a catalyst or even absorb water from desert air.

- 'Green chemistry prize' -

Yaghi's name has previously been floated alongside Japan's Susumu Kitagawa and Makoto Fujita -- also considered pioneers of the technology.

Another standout in the field of MOFs is West Bank-born American Omar K. Farha, a professor at Northwestern University.

For David Pendlebury, who heads research analysis at the research firm Clarivate, another contender for a "green chemistry prize" is France's Jean-Marie Tarascon for contributions "in new battery technologies".

Clarivate, which bases its Nobel predictions on a researcher's number of citations, spotlighted Tarascon for "fundamental advances and novel applications in energy storage and conversion technology".

Another name often cited among commentators is Taiwanese-American biochemist Chi-Huey Wong, which science magazine Chemistry Views noted is best known for pioneering methods for the "synthesis of complex carbohydrates and glycoproteins, facilitating their application in therapeutic contexts".

Chemistry Views also mentioned US chemical engineer Robert Langer, known for work in "drug delivery systems, biomaterials, and tissue engineering", as a contender.

It also listed Karl Deisseroth, a US psychiatrist and neurologist, who has been mentioned for the past decade as a possible laureate for developing the field of optogenetics, using light to control cells.

Germany's Herbert W. Roesky, known for inorganic chemistry and "synthesis of novel compounds and materials", was also mentioned by the magazine.

- Typical Nobel material -

Brostrom also noted that a name that has started being buzzed about is American chemical engineer Harry B. Gray, whose research has examined "how electrons move in molecules in our living cells".

"That's the kind of fundamental prerequisite for things like photosynthesis and cellular energy use. Typical Nobel Prize material," Brostrom said.

Last year, the chemistry prize went to Americans David Baker and John Jumper, together with Briton Demis Hassabis, for work on cracking the code of the structure of proteins, the building blocks of life, through computing and artificial intelligence.

On Monday, the Nobel Prize in Medicine was awarded to a US-Japanese trio for research into the human immune system.

Mary Brunkow and Fred Ramsdell, of the United States, and Japan's Shimon Sakaguchi were recognised by the Nobel jury for identifying immunological "security guards".

The chemistry prize will be followed by the literature prize on Thursday, and the highly watched Nobel Peace Prize on Friday.

The economics prize wraps up the 2025 Nobel season on October 13.

The Nobel consists of a diploma, a gold medal and a $1.2-million cheque, to be shared if there is more than one winner in a discipline.

The laureates will receive their prizes from Sweden's King Carl XVI Gustaf at a formal ceremony in Stockholm on December 10.

That date is the anniversary of the death in 1896 of scientist Alfred Nobel, who created the prizes in his will.

H.El-Hassany--DT