Dubai Telegraph - Less mapped than the Moon: quest to reveal the seabed

EUR -
AED 4.382198
AFN 78.754674
ALL 96.774708
AMD 453.149301
ANG 2.136006
AOA 1094.207135
ARS 1723.102862
AUD 1.703562
AWG 2.147844
AZN 2.027442
BAM 1.958133
BBD 2.409352
BDT 146.164116
BGN 2.003902
BHD 0.44984
BIF 3543.996936
BMD 1.193246
BND 1.513406
BOB 8.265053
BRL 6.196645
BSD 1.1962
BTN 110.054406
BWP 15.599563
BYN 3.379194
BYR 23387.630134
BZD 2.405847
CAD 1.612422
CDF 2693.762547
CHF 0.916294
CLF 0.025959
CLP 1024.998187
CNY 8.291151
CNH 8.289429
COP 4358.929228
CRC 591.891888
CUC 1.193246
CUP 31.621031
CVE 110.398824
CZK 24.32057
DJF 213.014461
DKK 7.467264
DOP 75.160557
DZD 154.348858
EGP 55.874598
ERN 17.898697
ETB 185.131832
FJD 2.622039
FKP 0.865821
GBP 0.867049
GEL 3.215789
GGP 0.865821
GHS 13.067895
GIP 0.865821
GMD 87.70765
GNF 10498.001207
GTQ 9.178126
GYD 250.254403
HKD 9.315604
HNL 31.597639
HRK 7.540838
HTG 156.807821
HUF 381.264314
IDR 20023.868432
ILS 3.681565
IMP 0.865821
INR 109.70767
IQD 1563.749454
IRR 50265.506279
ISK 145.027398
JEP 0.865821
JMD 187.696961
JOD 0.846036
JPY 183.553496
KES 154.250804
KGS 104.349672
KHR 4801.014384
KMF 491.617467
KPW 1074.001913
KRW 1714.128315
KWD 0.365981
KYD 0.996775
KZT 600.868221
LAK 25678.663363
LBP 107122.636637
LKR 370.091721
LRD 221.344446
LSL 18.781995
LTL 3.523347
LVL 0.721783
LYD 7.487624
MAD 10.8345
MDL 20.12057
MGA 5321.878904
MKD 61.653933
MMK 2506.310149
MNT 4256.181546
MOP 9.616435
MRU 47.574622
MUR 54.20887
MVR 18.435607
MWK 2072.668697
MXN 20.600147
MYR 4.698762
MZN 76.069502
NAD 18.865481
NGN 1659.806193
NIO 43.189568
NOK 11.43188
NPR 176.109616
NZD 1.971279
OMR 0.458799
PAB 1.196155
PEN 3.989617
PGK 5.083822
PHP 70.236878
PKR 333.900229
PLN 4.209046
PYG 8027.167678
QAR 4.344732
RON 5.098262
RSD 117.403788
RUB 89.791784
RWF 1733.190447
SAR 4.47538
SBD 9.615301
SCR 17.094249
SDG 717.748765
SEK 10.549557
SGD 1.511223
SHP 0.895244
SLE 29.085359
SLL 25021.780252
SOS 681.970209
SRD 45.34754
STD 24697.792058
STN 24.610708
SVC 10.466336
SYP 13196.79832
SZL 18.849358
THB 37.471506
TJS 11.172143
TMT 4.188295
TND 3.373606
TOP 2.873051
TRY 51.903114
TTD 8.118705
TWD 37.455406
TZS 3036.811959
UAH 51.195332
UGX 4255.17589
USD 1.193246
UYU 45.264869
UZS 14555.155623
VES 437.738577
VND 30910.452286
VUV 142.675312
WST 3.241825
XAF 656.725554
XAG 0.010797
XAU 0.00023
XCD 3.224808
XCG 2.155741
XDR 0.816831
XOF 653.262056
XPF 119.331742
YER 284.471219
ZAR 18.895594
ZMK 10740.668787
ZMW 23.654963
ZWL 384.224865
  • RBGPF

    1.3800

    83.78

    +1.65%

  • SCS

    0.0200

    16.14

    +0.12%

  • CMSC

    0.0100

    23.71

    +0.04%

  • BCC

    -0.5500

    80.3

    -0.68%

  • GSK

    0.5600

    50.66

    +1.11%

  • NGG

    0.3900

    85.07

    +0.46%

  • CMSD

    0.0392

    24.09

    +0.16%

  • AZN

    -0.6300

    92.59

    -0.68%

  • RELX

    -1.2100

    36.17

    -3.35%

  • RIO

    1.7600

    95.13

    +1.85%

  • BCE

    0.2200

    25.49

    +0.86%

  • BTI

    0.0600

    60.22

    +0.1%

  • RYCEF

    -0.0700

    16.88

    -0.41%

  • JRI

    -0.0500

    12.94

    -0.39%

  • VOD

    0.1400

    14.71

    +0.95%

  • BP

    0.3400

    38.04

    +0.89%

Less mapped than the Moon: quest to reveal the seabed
Less mapped than the Moon: quest to reveal the seabed / Photo: Boris HORVAT - AFP/File

Less mapped than the Moon: quest to reveal the seabed

It covers nearly three-quarters of our planet but the ocean floor is less mapped than the Moon, an astonishing fact driving a global push to build the clearest-ever picture of the seabed.

Text size:

Understanding the ocean depths is crucial for everything from laying undersea cables and calculating tsunami paths, to projecting how seas will rise as the climate warms.

When Seabed 2030 launched in 2017, just six percent of the ocean floor was properly mapped.

The project has since boosted that figure to over 25 percent, harnessing historic data, sonar from research and industry vessels, and growing computing power.

"As we put more data together, we get this beautiful picture of the seafloor, it's really like bringing it into focus," said Vicki Ferrini, head of the project's Atlantic and Indian Ocean Centre.

"You start to see the details and the patterns, you start to understand the (ocean) processes in a different way," added Ferrini, a senior research scientist at Columbia University's Lamont-Doherty Earth Observatory.

Satellite technology means we can now zoom in on the surface of the Moon, or a neighbourhood half-way around the world, but when it comes to the ocean floor, there's a basic problem.

"It's physics," said Ferrini. "The water is in the way."

While instruments can peer through relatively shallow depths to the sea floor, for most of the ocean only acoustic methods are viable -- sonar that pings the seabed and returns data on depths.

In the past, most ships used single beam sonar, sending down a single echo and offering one data point at a time.

Nowadays, multibeam sonar is common, explained Martin Jakobsson, dean of earth and environmental science at Stockholm University and co-head of Seabed 2030's Arctic and North Pacific centre.

"You get a swathe, almost like a 3D view directly, and that's really what we want to map the ocean with."

- 'More geopolitical than ever' -

But the availability of multibeam sonar did not translate into a central clearing house for data, and not all data collection is equal.

Different vessels collect at different resolutions, and data capture can be affected by the turbidity of the ocean and even the tides.

Collating, correcting and integrating that data is where Seabed 2030 has come in.

"We have this real patchwork," said Ferrini. "We do our best to weave it all together... making sure that we are normalising and justifying all of these measurements."

The project has set relatively coarse resolution targets for mapping -- grid cell sizes of 400 metres squared (4,300 square feet) for most of the ocean floor -- but even achieving that is a complicated process.

"It's a cost issue, it's also a 'people don't know why it's needed' issue," Jakobsson said.

"And right now it's more geopolitical than ever before," he added, particularly in the heavily contested Arctic.

- 'Just beautiful' -

The project has benefitted from some technological advances, including the spread of multibeam sonar and growing computing power.

Machine learning helps with data processing and pattern recognition, and can even enhance imagery and try to fill in some gaps.

"As we start to bring together each trackline and paint the picture more completely... we start to see these incredible meandering channels on the seafloor that look just like what we see on land," said Ferrini.

It is "just beautiful," she added.

Part of the project, which is funded by the Japanese non-profit Nippon Foundation, has been finding the biggest gaps in seafloor knowledge, most often in the open sea and areas outside common shipping routes.

Autonomous platforms equipped with sonar that can float at sea could speed up data collection, although for now uncovering "hidden" data that is sitting unshared is helping fill many gaps.

The work comes as countries debate whether to open stretches of the seabed to the mining of minerals used in the energy transition.

It is a divisive question, and like many scientists Ferrini warns against proceeding without more research.

"We need to have the data so we can make data-informed decisions, and we don't yet."

H.Hajar--DT