Dubai Telegraph - Historic NASA asteroid mission set for perilous return

EUR -
AED 4.35335
AFN 77.050797
ALL 96.66512
AMD 452.977132
ANG 2.121943
AOA 1087.00321
ARS 1715.259993
AUD 1.706088
AWG 2.136666
AZN 2.019869
BAM 1.955701
BBD 2.406579
BDT 146.012629
BGN 1.990709
BHD 0.449077
BIF 3539.921292
BMD 1.18539
BND 1.513224
BOB 8.256583
BRL 6.231008
BSD 1.19484
BTN 109.724461
BWP 15.634211
BYN 3.403228
BYR 23233.647084
BZD 2.403079
CAD 1.614917
CDF 2684.909135
CHF 0.911322
CLF 0.026011
CLP 1027.058063
CNY 8.240537
CNH 8.248946
COP 4350.080393
CRC 591.67013
CUC 1.18539
CUP 31.412839
CVE 110.259434
CZK 24.334287
DJF 212.769259
DKK 7.470097
DOP 75.226202
DZD 154.463202
EGP 55.903178
ERN 17.780852
ETB 185.61503
FJD 2.613371
FKP 0.865849
GBP 0.861444
GEL 3.194674
GGP 0.865849
GHS 13.089339
GIP 0.865849
GMD 86.533903
GNF 10484.470707
GTQ 9.164537
GYD 249.97738
HKD 9.259024
HNL 31.537408
HRK 7.536597
HTG 156.372106
HUF 381.328619
IDR 19883.141804
ILS 3.663335
IMP 0.865849
INR 108.693763
IQD 1565.320977
IRR 49934.560565
ISK 144.985527
JEP 0.865849
JMD 187.240547
JOD 0.840489
JPY 183.456955
KES 154.262212
KGS 103.662825
KHR 4804.757439
KMF 491.93733
KPW 1066.851144
KRW 1719.768532
KWD 0.36382
KYD 0.99575
KZT 600.939662
LAK 25713.701882
LBP 106998.998316
LKR 369.511346
LRD 215.369127
LSL 18.971842
LTL 3.500149
LVL 0.717031
LYD 7.497621
MAD 10.838453
MDL 20.096985
MGA 5339.730432
MKD 61.636888
MMK 2489.708718
MNT 4227.553379
MOP 9.608515
MRU 47.674593
MUR 53.852723
MVR 18.32658
MWK 2071.895403
MXN 20.70407
MYR 4.672854
MZN 75.580924
NAD 18.971842
NGN 1643.520192
NIO 43.96778
NOK 11.437875
NPR 175.559137
NZD 1.964681
OMR 0.458017
PAB 1.19484
PEN 3.994898
PGK 5.114742
PHP 69.837307
PKR 334.289724
PLN 4.215189
PYG 8003.59595
QAR 4.35638
RON 5.097064
RSD 117.394074
RUB 90.535429
RWF 1743.311992
SAR 4.447217
SBD 9.544303
SCR 17.203132
SDG 713.016537
SEK 10.580086
SGD 1.506161
SHP 0.88935
SLE 28.834661
SLL 24857.038036
SOS 682.865527
SRD 45.104693
STD 24535.182964
STN 24.498763
SVC 10.454472
SYP 13109.911225
SZL 18.966043
THB 37.225573
TJS 11.153937
TMT 4.148866
TND 3.433027
TOP 2.854135
TRY 51.401485
TTD 8.11259
TWD 37.456003
TZS 3076.744675
UAH 51.211415
UGX 4271.784345
USD 1.18539
UYU 46.367659
UZS 14607.262574
VES 410.075543
VND 30749.020682
VUV 140.814221
WST 3.213333
XAF 655.923887
XAG 0.014004
XAU 0.000244
XCD 3.203577
XCG 2.153391
XDR 0.815759
XOF 655.923887
XPF 119.331742
YER 282.508153
ZAR 19.134414
ZMK 10669.938133
ZMW 23.448816
ZWL 381.695147
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    1.3800

    83.78

    +1.65%

  • BCC

    0.5100

    80.81

    +0.63%

  • JRI

    0.1400

    13.08

    +1.07%

  • RIO

    -4.1000

    91.03

    -4.5%

  • RYCEF

    -0.4300

    16

    -2.69%

  • RELX

    -0.3700

    35.8

    -1.03%

  • CMSD

    -0.0400

    24.05

    -0.17%

  • NGG

    0.2000

    85.27

    +0.23%

  • CMSC

    0.0500

    23.76

    +0.21%

  • AZN

    0.1800

    92.77

    +0.19%

  • VOD

    -0.0600

    14.65

    -0.41%

  • BCE

    0.3700

    25.86

    +1.43%

  • GSK

    0.9400

    51.6

    +1.82%

  • BP

    -0.1600

    37.88

    -0.42%

  • BTI

    0.4600

    60.68

    +0.76%

Historic NASA asteroid mission set for perilous return
Historic NASA asteroid mission set for perilous return / Photo: Jason Connolly - AFP

Historic NASA asteroid mission set for perilous return

NASA's first mission to retrieve an asteroid sample and return it to US soil is expected to reach a perilous finale on Sunday with a descent into the Utah desert.

Text size:

Scientists hope the material -- possibly the most ever retrieved by such a mission -- will provide humanity with a better understanding on the formation of our solar system and how Earth became habitable.

The US space probe OSIRIS-REx, launched in 2016, scooped up the sample from an asteroid called Bennu almost three years ago.

Touchdown is scheduled for Sunday at around 9:00 am local time (1500 GMT), at a military testing site in the western state.

Some four hours earlier, at about 67,000 miles (108,000 kilometers) away from Earth, the Osiris-Rex probe will release the capsule containing the sample.

The final descent lasts 13 minutes: the capsule enters the atmosphere at a speed of around 27,000 miles (43,000 kilometers) per hour and reaches a maximum temperature of 5,000 degrees Fahrenheit (2,800 degrees Celsius), NASA said.

If all goes well, two successive parachutes will bring the capsule to a soft landing on the desert floor, where it will be retrieved by prepositioned staff.

Hitting the target area of 250 square miles (650 square kilometers) is like "throwing a dart across the length of a basketball court and hitting the bullseye," Rich Burns, OSIRIS-REx project manager at NASA, told a press conference last month.

The night before landing, controllers will have a final opportunity to abort if conditions are not correct. If so, the probe would then circle the Sun before its next attempt -- in 2025.

"Sample return missions are hard. There's a number of things that can go wrong," said Sandra Freund, Lockheed Martin's OSIRIS-REx program manager.

Teams have meticulously prepared for the capsule's return -- even a "hard landing scenario" according to Freund -- in order to preserve the asteroid material in its pristine form.

A final dress rehearsal took place in August, with a replica capsule dropped from a helicopter.

- Texas 'clean room' -

Once the capsule is on the ground, a team will check its condition before placing it in a net, which will be lifted by helicopter and taken to a temporary "clean room."

The next day, the sample will be flown to a highly specialized laboratory at NASA's Johnson Space Center in Houston, Texas.

Scientists will open the capsule and separate pieces of the rock and dust over a period of days.

Some of the sample will be for studies now, with the rest stored away for future generations equipped with better technology -- a practice first started during the Apollo missions to the Moon.

NASA is expected to unveil its first results during a press conference on October 11.

Obtaining the sample involved a high-risk operation in October 2020: the probe came into contact with the asteroid for a few seconds, and a blast of compressed nitrogen was emitted to raise the dust sample which was then captured.

Bennu had surprised scientists during sample collection: during the few seconds of contact with the surface, the probe's arm had sunk into the soil, revealing a much lower density than expected.

However it allowed NASA to take far more than the initial target of 60 grams -- the agency thinks the sample could be up to some 250 grams of material.

That mass would be the "largest from beyond the orbit of the moon" NASA program executive Melissa Morris said.

- 'Seeds of life' -

The first samples brought to Earth by asteroids were carried out by Japanese probes in 2010 and 2020, with the latter found to contain uracil, one of the building blocks of RNA.

The finding lent weight to a longstanding theory that life on Earth may have been seeded from outer space when asteroids crashed into our planet carrying fundamental elements.

Asteroids like Bennu and Ryugu, one of the asteroids studied by Japan, may look similar but "can be very, very different," according to Morris.

Asteroids are interesting because they are composed of the original materials of the solar system.

The cupful of rocks may hold "clues we believe to some of the deepest questions that we asked ourselves as humanity," said University of Arizona at Tucson's Dante Lauretta, principal investigator on OSIRIS-REx.

The samples may represent the "seeds of life that these asteroids delivered at the beginning of our planet, leading to this incredible biosphere, biological evolution and to us being here today."

Bennu, 500 meters in diameter, orbits the Sun and approaches Earth every six years.

There is a small chance (1 in 2,700) that it will collide with the Earth in 2182, which would have a catastrophic impact.

NASA has studied ways to divert an asteroid's trajectory, and a better understanding of Bennu's composition could therefore prove useful.

Y.Amjad--DT