Dubai Telegraph - Nobel scientist uncovered tiny genetic switches with big potential

EUR -
AED 4.39647
AFN 79.010777
ALL 96.7817
AMD 453.834235
ANG 2.142963
AOA 1097.770504
ARS 1728.714548
AUD 1.697422
AWG 2.154839
AZN 2.03606
BAM 1.959479
BBD 2.410826
BDT 146.2646
BGN 2.010429
BHD 0.451359
BIF 3555.483592
BMD 1.197133
BND 1.514243
BOB 8.270527
BRL 6.218144
BSD 1.196947
BTN 110.127756
BWP 15.609305
BYN 3.381248
BYR 23463.797441
BZD 2.40732
CAD 1.614512
CDF 2702.527156
CHF 0.914657
CLF 0.026043
CLP 1028.337353
CNY 8.318156
CNH 8.313415
COP 4373.125105
CRC 592.211831
CUC 1.197133
CUP 31.724012
CVE 110.884406
CZK 24.328187
DJF 212.75416
DKK 7.467485
DOP 75.419599
DZD 154.65435
EGP 56.059366
ERN 17.956988
ETB 186.200377
FJD 2.621956
FKP 0.868641
GBP 0.866784
GEL 3.226251
GGP 0.868641
GHS 13.114581
GIP 0.868641
GMD 88.00166
GNF 10476.106643
GTQ 9.184243
GYD 250.420144
HKD 9.344996
HNL 31.588305
HRK 7.535923
HTG 156.894557
HUF 380.549872
IDR 20097.400931
ILS 3.704161
IMP 0.868641
INR 109.934056
IQD 1568.04388
IRR 50429.2077
ISK 144.996855
JEP 0.868641
JMD 187.812603
JOD 0.848796
JPY 183.318702
KES 154.514154
KGS 104.688869
KHR 4816.661042
KMF 493.218172
KPW 1077.499653
KRW 1713.586906
KWD 0.366789
KYD 0.997473
KZT 601.288873
LAK 25747.338611
LBP 102474.544325
LKR 370.335275
LRD 221.435728
LSL 18.885656
LTL 3.534821
LVL 0.724134
LYD 7.519117
MAD 10.83945
MDL 20.132798
MGA 5357.167785
MKD 61.629467
MMK 2514.472536
MNT 4270.0428
MOP 9.623167
MRU 47.746641
MUR 54.05048
MVR 18.507873
MWK 2075.496582
MXN 20.615098
MYR 4.704817
MZN 76.329328
NAD 18.885656
NGN 1661.703631
NIO 44.052706
NOK 11.415096
NPR 176.204811
NZD 1.969152
OMR 0.460301
PAB 1.196947
PEN 4.002915
PGK 5.201766
PHP 70.529025
PKR 334.819598
PLN 4.205952
PYG 8032.0796
QAR 4.363392
RON 5.097505
RSD 117.394378
RUB 90.079313
RWF 1746.378689
SAR 4.490097
SBD 9.670049
SCR 16.594223
SDG 720.018515
SEK 10.539112
SGD 1.512703
SHP 0.898159
SLE 29.091786
SLL 25103.269553
SOS 682.882058
SRD 45.495226
STD 24778.226215
STN 24.546083
SVC 10.473663
SYP 13239.776792
SZL 18.879445
THB 37.386326
TJS 11.179589
TMT 4.189964
TND 3.427835
TOP 2.882408
TRY 52.027807
TTD 8.124253
TWD 37.561827
TZS 3070.644609
UAH 51.226874
UGX 4257.99405
USD 1.197133
UYU 45.295038
UZS 14565.345295
VES 429.143458
VND 31125.445585
VUV 143.139968
WST 3.252382
XAF 657.190824
XAG 0.010137
XAU 0.00022
XCD 3.23531
XCG 2.15725
XDR 0.816474
XOF 657.190824
XPF 119.331742
YER 285.394994
ZAR 18.826046
ZMK 10775.631872
ZMW 23.669438
ZWL 385.476184
  • SCS

    0.0200

    16.14

    +0.12%

  • CMSC

    0.0100

    23.71

    +0.04%

  • CMSD

    0.0392

    24.09

    +0.16%

  • RIO

    1.7600

    95.13

    +1.85%

  • BCE

    0.2200

    25.49

    +0.86%

  • RBGPF

    0.0000

    82.4

    0%

  • BCC

    -0.5500

    80.3

    -0.68%

  • JRI

    -0.0500

    12.94

    -0.39%

  • NGG

    0.3900

    85.07

    +0.46%

  • GSK

    0.5600

    50.66

    +1.11%

  • AZN

    -0.6300

    92.59

    -0.68%

  • BP

    0.3400

    38.04

    +0.89%

  • BTI

    0.0600

    60.22

    +0.1%

  • RYCEF

    -0.1700

    16.43

    -1.03%

  • VOD

    0.1400

    14.71

    +0.95%

  • RELX

    -1.2100

    36.17

    -3.35%

Nobel scientist uncovered tiny genetic switches with big potential
Nobel scientist uncovered tiny genetic switches with big potential / Photo: LAUREN OWENS LAMBERT - AFP

Nobel scientist uncovered tiny genetic switches with big potential

Harvard geneticist Gary Ruvkun vividly remembers the late-night phone call with his longtime friend and now 2024 Nobel Prize in Medicine co-laureate Victor Ambros, when they made their groundbreaking discovery of genetic switches that exist across the tree of life.

Text size:

It was the early 1990s. The pair, who had met a decade earlier and bonded over their fascination with an obscure species of roundworm, were exchanging datapoints at 11 pm -- one of the rare moments Ambros could steal away from tending to his newborn baby.

"It just fit together like puzzle pieces," Ruvkun told AFP in an interview from his home in a Boston suburb, shortly after learning of the award on Monday. "It was a eureka moment."

What they had uncovered was microRNA: tiny genetic molecules that act as key regulators of development in animals and plants, and hold the promise of breakthroughs in treating a wide range of diseases in the years ahead.

Although these molecules are only 22 "letters" long -- compared to the thousands of lines of code in regular protein-coding genes -- their small size belies their critical role as molecular gatekeepers.

"They turn off target genes," Ruvkun explained.

"It's a little bit like how astronomy starts with looking at the visible spectrum, and then people thought 'If we look with X rays, we can see much higher energy events,'" he added.

"We were looking at genetics at much smaller scales than it had been looked at before."

- Dismissed at first -

Their discovery had its roots in early investigations into C. elegans, a one-millimeter-long roundworm.

Ambros and Ruvkun were intrigued by the interplay between two genes that seemed to disrupt the worm's normal development -- causing them either to stay in a juvenile state or acquire adult features prematurely.

The genetic information contained in all our cells flows from DNA to messenger RNA (mRNA) through a process called transcription, and then on to the cellular machinery where it provides instructions on which proteins to create.

It's through this process, understood since the mid-20th century, that cells become specialized and carry out different functions.

But Ambros and Ruvkun, who began their work in the same lab before moving to different institutions, discovered a fundamentally new pathway for regulating gene activity through microRNAs, which control gene expression after transcription.

They published their findings in back-to-back papers in Cell in 1993, but at first, the discovery was dismissed as an esoteric detail, likely irrelevant to mammals.

"We were considered an oddity in the world of developmental biology," Ruvkun recalled. Even he had little idea their work would one day be celebrated by the wider scientific community.

That all changed in 2000 when Ruvkun's lab discovered another microRNA that was present throughout the tree of life -- from roundworms to mollusks, chickens, and humans.

- 'Celebrating like crazy' -

At the time, the human genome was still being mapped, but the portion that was complete was available to researchers.

"I think it was probably one-third done, and I could already see (the new microRNA) in that one-third of the human genome," said Ruvkun. "That was a surprise!"

Since then, the microRNA field has exploded, with more than 170,000 citations currently listed in biomedical literature.

More than 1,000 microRNAs have been identified in human DNA, and some are already being used to better understand tumor types and develop treatments for people with chronic lymphocytic leukemia.

Trials are also underway to develop microRNAs as treatments for heart disease.

On the morning of their Nobel win, the two old friends "Facetimed and high-fived," Ruvkun said. "It's magnificent, and we're going to be celebrating like crazy."

A.Ragab--DT